
MICRU background map and effective cloud fraction algorithms
designed for UV/vis satellite instruments with large viewing angles
Holger Sihler1, Steffen Beirle1, Steffen Dörner1, Marloes Gutenstein-Penning de Vries1,2,
Christoph Hörmann1,3, Christian Borger1, Simon Warnach1, and Thomas Wagner1

1Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
2now at: Deutscher Wetterdienst, Offenbach, Germany
3now at: Volume Graphics GmbH, Heidelberg, Germany

Correspondence: holger.sihler@mpic.de

Abstract. Clouds impact the radiative transfer of the Earth’s atmosphere and strongly influence satellite measurements in the

UV visible and IR spectral ranges. For satellite measurements of trace gases absorbing in the UV/vis spectral range, particularly

clouds ultimately determine the vertical sensitivity profile, mainly by reducing the sensitivity for trace gas columns below the

cloud.

The Mainz Iterative Cloud Retrieval Utilities (MICRU) algorithm is specifically designed to reduce the error budget of trace5

gas retrievals, such as those for nitrogen dioxide (NO2), which strongly depends on the accuracy of small cloud fractions (CF)

in particular. The accuracy of MICRU is governed by an empirical parametrisation of the viewing geometry dependent back-

ground surface reflectivity taking instrumental and physical effects into account. Instrumental effects are mainly degradation

and polarisation effects, physical effects are due to the anisotropy of the surface reflectivity, e. g. shadowing of plants and sun

glitter.10

MICRU is applied to main science channel (MSC) and polarisation measuring device (PMD) data collected between April

2007 and June 2013 by the GOME-2A instrument onboard the MetOp-A satellite. CF are retrieved at different spectral bands

between 374 and 758 nm. The MICRU results for MSC and PMD at different wavelengths are inter-compared to study CF

precision and accuracy, which depend on wavelength and spatial correlation. Furthermore, MICRU results are compared to

FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A band) and OCRA (Optical Cloud Recognition Algorithm)15

operational cloud products.

We show that MICRU retrieves small CF with an accuracy of 0.04 or better for the entire 1920 km wide swath with a

potential bias between -0.01 and -0.03. CF retrieved at shorter wavelengths are less affected by adverse surface heterogeneities.

The comparison to the operational CF algorithms shows that MICRU significantly reduces the dependence on viewing angle,

time, and sun glitter. Systematic effects along coasts are particularly small for MICRU due to its dedicated treatment of land20

and ocean surfaces.

The MICRU algorithm is designed for spectroscopic instruments ranging from the GOME to TROPOMI/Sentinel-5P, but is

also applicable to UV/vis imagers like, for example, AVHRR, MODIS, VIIRS, and Sentinel-2.
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1 Introduction

Clouds are the most clearly visible component of the atmosphere, both from the ground and from space. Their presence

increases the shortwave albedo of the Earth and, hence, reduces the amount of solar radiation absorbed by the Earth. Clouds

furthermore alter the radiative transfer (RT) within the atmosphere by effectively shielding the underlying atmosphere and

surface from observation. This paper focuses on the influence of clouds on the measurement sensitivity for atmospheric trace-5

gases retrieved from satellite observations in the UV and visible (UV/vis) spectral ranges. The largest portion of the Earth’s

surface is darker than overlying clouds. In this scenario, the measurement sensitivity – that is the air mass factor (AMF) (Noxon

et al., 1979; Solomon et al., 1987; McKenzie et al., 1991; Perliski and Solomon, 1993; Sarkissian et al., 1995; Rozanov

and Rozanov, 2010; Deutschmann et al., 2011) – is decreased for trace gas abundances below clouds and increased above

(see e. g. Wagner et al., 2003). For trace gases located within clouds, however, the influence of clouds depends on the cloud10

characteristics and trace-gas profiles. In any case, cloud properties need to be carefully constrained in order to achieve high

accuracy in tropospheric trace-gas measurements from satellites (De Smedt et al., 2008; Liu et al., 2011; Barkley et al., 2012;

Lorente et al., 2017). Boersma et al. (2004), for example, estimated the uncertainty in the tropospheric air mass factor for

GOME measurements of nitrogen dioxide (NO2) due to uncertainties in the cloud fraction between 25 and 30% over large

parts of North America, Europe and South East Asia, where most anthropogenic NO2 emission occur.15

Satellite retrievals of trace gases with high abundances in the boundary layer depend on the amount and properties of clouds

within one satellite pixel. The effective cloud fraction (CF, c) is one measure to quantify cloud contamination. CF is defined by

c=
R−Rmin

Rmax−Rmin
(1)

based on the top of atmosphere (TOA) reflectance20

R=
πI

E0 cosϑ0
(2)

with TOA radiance I , solar irradiance E0, and solar zenith angle ϑ0. This definition of c applies the independent pixel-

approximation (IPA) neglecting the influence of horizontal RT (Martin et al., 2002). Rmin and Rmax in Eq. (1) denote lower

and upper thresholds corresponding to reflectances from cloud free and completely cloudy pixel, respectively. Rmin depends

on the reflecting properties of the surface and viewing geometry. Hence, an Rmin approximating the time dependent the actual25

bidirectional reflectance distribution function (BRDF) is required for any geolocation in order to retrieve small CF at high

accuracy. In contrary, Rmax depends on cloud albedo. The cloud albedo depends on optical density and scattering properties,

which can be described by an a-priory cloud model, in addition to the observation geometry. Rmax may be empirically deter-

mined (e. g Grzegorski et al., 2006; Lutz et al., 2016) or calculated using a radiative transfer model (RTM) (e. g. Wang et al.,

2008). MICRU applies a Lambertian cloud model with a fixed albedo of 0.8 Stammes et al. (2008) rendering Rmax depending30

on observation geometry alone.

Within tropospheric trace gas retrievals, cloudy pixels are usually flagged applying a threshold for c between 10 and 30%, and

a high accuracy of c is required for the correction of cloud effects of remaining pixels. Specifically, the accurate determination
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ofRmin is crucial to determine small CF accurately.Rmin depends on the geolocation and time and, therefore, maps of the lower

threshold are needed. The Heidelberg iterative cloud retrieval utilities (HICRU), for example, derive background maps based

on TOA reflectances using imaging processing techniques (Grzegorski et al., 2006; Grzegorski, 2009). In contrary, Koelemeijer

et al. (2003) take Rayleigh scattering into account providing Lambert-equivalent reflectivity (LER) maps. More sophisticated

methods apply complex BRDF accounting for the anisotropy of the surface reflectivity (Vasilkov et al., 2017; Lorente et al.,5

2018).

Algorithms for the retrieval of background maps usually rely on completely cloud-free observations over a certain location.

Here, we are interested in CF of spectroscopic measurements. Compared to imager instruments, spectrometers are characterised

by lower spatial but much higher spectral resolution. For example, the imager Visible Infrared Imaging Radiometer Suite

(VIIRS) features 22 spectral channels at a resolution of approximately 400 m whereas the spectrometer Ozone Monitoring10

Instrument (OMI) offers 1176 spectral channels at a nadir resolution of 13 km × 24 km (Schueler et al., 2002; Levelt et al.,

2006; KNMI, 2019; de Graaf et al., 2016; Sihler et al., 2017). Based on this difference of spatial resolution, it becomes evident

that the probability to obtain a completely cloud-free observation over a certain location is much higher for imagers than for

spectrometers (Krijger et al., 2007). Therefore, background-reflectance retrieving algorithms applicable to spectrometer data

have to deal with much sparser statistics than those tailored for imagers.15

Algorithms deriving cloud fractions from spectroscopic measurements feature different approaches for background maps.

One of the first algorithms published for the Global Ozone Monitoring Instrument (GOME, Burrows et al., 1999) is Initial

Cloud Fitting Algorithm (ICFA) applying the global digital elevation model ETOPO5 (Kuze and Chance, 1994; Tuinder et al.,

2004). Seven years later, Koelemeijer et al. (2001) published the fast method for retrieval of cloud parameters using oxygen A-

band measurements (FRESCO), whose development continued as FRESCO+ (Fournier et al., 2006; Wang et al., 2008; TEMIS,20

2019). Operational algorithms, like FRESCO+, apply background maps from auxiliary instruments in order to provide data

directly after launch. The algorithms are then usually updated implementing different background maps as the mission evolves.

The background maps may be either supplied from spectrometers or images. FRESCO version 6, for example, applies imager

data from the Medium Resolution Imaging Spectrometer (MERIS) resolving albedo gradients, e. g. over coastlines, much better

than the spectrometer data (Popp et al., 2011). Kokhanovsky et al. (2009), on the other hand, interprets MERIS data using25

threshold techniques to derive cloud fractions for Scanning Imaging Absorption Spectrometer for Atmospheric Cartography

(SCIAMACHY, Bovensmann et al., 1999). FRESCO version 7 features another approach for the Global Ozone Monitoring

Experiment 2 (GOME-2, Callies et al., 2000; Munro et al., 2006, 2016) applying Lambertian Equivalent Reflectance (LER)

maps derived from GOME-2 itself (TEMIS, 2019; Tilstra et al., 2017b). Version 8 of FRESCO then applies a LER climatology

derived from GOME-2 data taking the viewing geometry into account. In contrast to FRESCO, Optical Cloud Recognition30

Algorithm (OCRA) applies background maps derived in the RGB color space (Loyola, 1998; Loyola et al., 2007; Lutz et al.,

2016). In its third version developed for GOME-2 and the Tropospheric Monitoring Instrument (TROPOMI, Veefkind et al.,

2012), OCRA also accounts for degradation, viewing geometry dependence, and sun glint (Lutz et al., 2016). For OMI, the first

version of OMCLDO2 (Stammes et al., 2008) uses albedo data from GOME (Koelemeijer et al., 2003) and TOMS (Herman

and Celarier, 1997) for calculating effective cloud fractions, whereas OMCLDO2 version 2 (Veefkind et al., 2016) applies a35
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LER database derived from OMI measurements themselves as published by (Kleipool et al., 2008). It is preferred to apply

background maps from the same sensor for cloud retrievals – like in (Grzegorski et al., 2006), (Veefkind et al., 2016), and

(Tilstra et al., 2017b) – in order to achieve higher CF accuracy especially at small CF because radiometric properties and their

dependence on viewing angles vary between sensors (e. g. Tilstra et al., 2012). This approach is especially suitable for scientific

studies using data processed offline. However, operational CF processors require background obtained from auxiliary sensors5

because data from the same sensor is then not yet available.

Recent developments also focus on applying geometry dependent background maps in CF algorithms. HICRU empirically

derives lower thresholds for each of the three subpixels of GOME separately (Grzegorski et al., 2006). For instruments featuring

wider swaths like OMI and GOME-2, the limitations of the LER surface model become more important (Vasilkov et al., 2017;

Lorente et al., 2017, 2018). Lorente et al. (2018) find biases in cloud fractions of up to 50% between backward-scattering and10

forward-scattering geometries in the GOME-2 FRESCO and 26% in the OMI OMCLDO2 cloud algorithms. Vasilkov et al.

(2017) show that applying a geometry dependent LER instead of a regular LER can lead up to a 50% increase of the trace-gas

column density over polluted areas. Furthermore, Vasilkov et al. (2018) compared CF derived using geometry dependent LER

with those based on regular LER and found CF differences of up to 0.07, especially for small CF. These absolute differences

correspond to relative errors that have a significant impact on trace gas retrievals. Aerosols, however, reduce the effect of the15

BRDF (Noguchi et al., 2015). These recent studies rely on BRDF information derived from Moderate Resolution Imaging

Spectroradiometer (MODIS, Justice et al., 1998) measurements because similar information from spectrometers is yet too

sparse to derive all coefficients of, for example, the Ross-Li BRDF model (Wanner et al., 1995).

This paper presents a new method to derive a geometry dependent lower threshold map from spectroscopic measurements.

The Mainz iterative cloud retrieval utilities (MICRU) apply an empirical parametrisation of the geometry dependence in order20

to overcome the limitation of having sparse data per geolocation. MICRU derives the lower threshold as LER in contrast to

its heritage algorithm HICRU, which applies TOA reflectances directly. Hence, first order atmospheric effects are accounted

for. Remaining dependencies on the viewing angle, which may be either instrumental artefacts or physical, are modelled by a

combination of a second order polynomial and a reduced model for surface effects of land and sun glitter over ocean (Cox and

Munk, 1954a; Harmel and Chami, 2013; Martin et al., 2016). It is noted that the idea of modelling the viewing angle dependence25

using a second order polynomial is not new. For example, Várnai and Marshak (2007) used a second order polynomial to model

the mean optical thickness of inhomogeneous clouds in MODIS measurements.

In this study, we apply MICRU to GOME-2 data exemplarily. Unlike its heritage algorithm, HICRU, MICRU is applicable

to almost arbitrary wavelength intervals in the UV/vis wavelength region. MICRU furthermore uses an RT model to reduce

the influence of atmospheric scattering for the retrieval of Rmin. MICRU CF are evaluated between 382 and 757.5 nm in order30

to investigate the spectral stability of the algorithm, the influence of the surface on CF accuracy, and the influence of spatial

aliasing specific to GOME/GOME-2 instruments (EUMETSAT, 2015).

The MICRU algorithm has been developed as part of the cloud fraction verification activities for the TROPOMI/S-5P

(Veefkind et al., 2012) and Sentinel 5 satellite missions. The operational cloud fraction algorithms for these missions are
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OCRA (Lutz et al., 2016) and FRESCO (Wang et al., 2008), respectively. A comparison between all three algorithms is per-

formed in Sect. 3, after introducing MICRU in Sect. 2.
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2 Method

MICRU is designed to be applicable to UV/vis satellite sensors operating on sun-synchronous orbits. In this study, we examine

its applicability using GOME-2 data. This section first describes the required input data (sec. 2.1) and the conversion between

TOA reflectancesR to LER T (Sect. 2.2). Section 2.3 then details the retrieval of Tmin maps. The calculation ofRmaxis described

in Sect. 2.4. Section 2.5 specifies the implementation of the MICRU algorithm, followed by a description of data sets MICRU5

results are compared to (Sect. 2.6).

2.1 Input data

2.1.1 GOME-2 data

The primary data used in this work are radiances measured by the GOME-2 instrument onboard MetOp satellites. There are

three essentially identical MetOp satellites in total: MetOp-A was launched in 2006 followed by MetOp-B and MetOp-C in10

2012 and 2018, respectively. The MetOp satellites fly in a sun-synchronous orbit with an equator crossing-time around 9:30

solar local time (Munro et al., 2016). This study applies data from GOME-2A only as it features the longest uninterrupted

time-series at the time of the MICRU algorithm development.

GOME-2 has four spectral main science channels (MSCs) with a spectral resolution between 0.26 and 0.51 nm ranging

between 240 and 790 nm. Each MSC band features 1024 spectral channels. This study uses GOME-2A MSC data collected15

between February 2007 and June 2013. Data before and after this period are discarded in order to avoid interferences from

instrument startup and a change of the operational swath width, respectively (EUMETSAT, 2015). Furthermore, GOME-2 has

two polarization measurement devices (PMDs) covering a similar spectral range but at a much coarser spectral resolution:

PMD-PP and PMD-SP measure the polarised intensity parallel and perpendicular to the slit of the spectrometer, respectively.

Lang (2010) defines 15 discrete wavelength intervals for each PMD instrument. On 11 March 2008, the PMD band definitions20

of GOME-2A were updated to version 3.1 (EUMETSAT, 2015; Munro et al., 2016). Therefore, PMD data obtained before

April 2008 are disregarded here in order to achieve a consistent PMD data set. All spectral data is contained in the level 1b

(L1b) data provided by EUMETSAT.

GOME-2 is a scanning spectrometer featuring a nominally 1920 km wide swath, which was reduced to 960 km in July 2013

(Munro et al., 2016). One nominal swath consists of 24 MSC or 192 PMD pixels, respectively. At nadir, the nominal MSC pixel25

size is 40 km × 80 km in along- and across-track direction, respectively. The PMDs feature an eight times higher acquisition

frequency leading to a smaller pixel size of 40 km × 10 km. The illumination-observation geometry is defined by the solar

zenith angle (SZA) θ0, the viewing zenith angle (VZA) θ and the relative azimuth angle (RAA) φ as sketched in Fig. 1. The

angles are defined at the pixel center at the surface. It is noted that the along-track pixel size increases with increasing VZA

due to the Earth’s curvature. Hence, the pixel shape becomes trapezoidal (de Graaf et al., 2016; Sihler et al., 2017).30

In the spectral domain, the MICRU algorithm is applied to 14 MSC and 16 PMD channels in order to assess the influence

of systematic differences on the accuracy of c. In principle, the radiometric input required by MICRU may be integrated

along any spectral interval, but it is beneficial to avoid significant absorption structures in order to minimise the influence of
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Figure 1. Angle definition at the surface: solar zenith angle θ0, viewing zenith angle θ and relative azimuth angle φ, scattering angle θs, and

reflected sun angle θr . Zenith is towards z.

atmospheric absorptions. A dependence on the accuracy of the spectral calibration, which may not be optimal, is reduced by

avoiding narrowband absorption features and Fraunhofer lines. Furthermore, broadband absorption by molecules and aerosols

interferes with the inversion of T from measured R. Interferences may not be avoided completely in the UV/vis, but MICRU

MSC channels are defined minimising interferences from broad- and narrowband spectral features caused by Fraunhofer lines,

inelastic Raman scattering (Grainger and Ring, 1962; Solomon et al., 1987, Ring effect), and molecular absorption by H2O,5

O2, and O4. The TOA reflectance Rk of MSC channel k is derived from the measured spectrum R(λ) by applying

Rk =R(λ) ∗Kk(λ) (3)

where Kk is the convolution kernel of channel k. Kk are either Gaussian or boxcar convolution kernels with different widths

as listed in Table 1 and depicted in Fig. 2. The MICRU PMD channels as listed in Table 2 are selected from predefined PMD

bands (Lang, 2010).10

The convolution kernels for 14 MICRU MSC channels are manually defined in the range between 374 and 758 nm. Hence,

CF results are available for a variety of spectral ranges with different atmospheric trace gas absorptions. This is particularly

important to improve collocation between CF and trace gas measurement featuring different spatial sensitivities caused by

spatial aliasing (EUMETSAT, 2015; Munro et al., 2016). Spatial aliasing is caused by the sequential detector readout in

connection with the movement of the GOME-2 scanning mirror (Sihler et al., 2017). The comparison of MICRU results from15

MSC channels 2,5, 10, and 11 allows the investigation of spatial aliasing. These channels furthermore allow to compare the

effect of spatial with spectral aliasing, which is due to differences in the spectral response of different channels. The horizontal

arrows in Fig. 3 indicate MSC channels 2 and 5 matching the spectral sensitivity of the two PMD-PP/SP channel pairs 1/9 and

4/12, respectively. The vertical arrows indicate MICRU channels featuring the same acquisition time, and, hence, minimizing
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Table 1. Definition of MICRU MSC channels k with spectral convolution kernels K centred at λ and width w. The kernels are either

Gaussian (denoted G) or boxcar (denoted b) shaped. According to the spatial aliasing of GOME-2 (Fig. 3), channels 1, 4, 5, and 10 apply the

same readout time as corresponding MSC/PMD channels in different bands.

Channel Spectral convolution kernel MSC RT Comment

k centre width shape band wavelength

1 374.96 nm 1.00 nm G 2B 375.0 nm same timing as channel 9

2 381.97 nm 3.57 nm b 2B 382.0 nm range of PMD-PP band 6

3 388.00 nm 1.00 nm G 2B 388.0 nm KNMI GOME-2 LER @ 388 nm

4 389.68 nm 1.00 nm G 2B 389.7 nm same timing as channel 14

5 424.52 nm 0.64 nm b 3 424.5 nm timing of PMD-PP band 6

6 425.00 nm 1.00 nm G 3 425.0 nm KNMI GOME-2 LER @ 425 nm

7 433.40 nm 1.00 nm G 3 433.4 nm same timing as channel 14

8 440.00 nm 1.00 nm G 3 440.0 nm KNMI GOME-2 LER @ 440 nm

9 460.00 nm 1.00 nm G 3 460.0 nm range of NO2 retrieval

10 516.67 nm 3.52 nm b 3 519.0 nm timing of PMD-PP band 9

11 521.77 nm 53.98 nm b 3 521.8 nm range of PMD-PP band 9

12 670.00 nm 1.00 nm G 4 670.0 nm KNMI GOME-2 LER @ 670 nm

13 680.00 nm 1.00 nm G 4 680.0 nm short of red edge and O2-B band

14 757.50 nm 0.75 nm G 4 757.5 nm short of O2-A band (FRESCO)

GOME-2A Solar Mean Reference Spectrum 2009-04-01
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Figure 2. Mean solar spectrum of GOME-2A MSC channels 2B, 3, and 4 recorded on 1 April 2009. Spectral convolution kernels Kk from

Table 1 are plotted in orange. Note small biases between overlapping bands due to different calibrations.

the spatial aliasing between them: MSC channels 2 and 10 correspond to PMD channels 1/9 and 4/12; MSC data acquired at

the same time but in different bands are sampled by MSC channels 1 and 9 in bands 2B and 3, respectively, and MSC channels
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Table 2. Definition of MICRU PMD channels for PP and SP polarisation, respectively. PMD band definitions are compiled in Sect. 5.1.5 of

(EUMETSAT, 2015) or Table 5 by Munro et al. (2016).

Channel PMD approximate RT

PP SP band w/l range wavelength

1 9 6 380 . . . 384 nm 382 nm

2 10 7 400 . . . 429 nm 413 nm

3 11 8 434 . . . 492 nm 460 nm

4 12 9 495 . . . 549 nm 519 nm

5 13 10 553 . . . 556 nm 554 nm

6 14 11 568 . . . 613 nm 589 nm

7 15 12 618 . . . 662 nm 639 nm

8 16 14 794 . . . 804 nm 799 nm
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Figure 3. Spatial aliasing of GOME-2 for MSC and PMD bands in time-wavelength space. Radiometric and spatial correlation is expected

maximal at the respective intersections. Note that the PMD read-out is faster (steep slope of gray lines) and at higher frequency compared to

the MSCs. The second PMD readout (m=1) begins after 23.4375 ms (EUMETSAT, 2015). Horizontal and vertical black arrows indicate the

spectral and temporal mapping between GOME-2 bands respectively.

4, 7, and 14 in bands 2B, 3, and 4, respectively. The correlation of MICRU CF depending on spatial alignment is investigated

in Sect. 3.3.3.
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Table 3. List of external data sets applied in MICRU (see text for details).

Name Symbol Reference(s) Native data resolution Comment

temporal spatial

Land sea mask LSM Wessel and Smith (1996),

NOAA (2018)

— ≈ 178 m GSHHG coast line database, rev. 679

Surface elevation h USGS (1996) — 30 arcsec GTOPO30, U.S. Geological Survey

Snow concentration — Hall and Riggs (2016) 8 d 0.05° MODIS Terra level 3 (MOD10C2)

Sea ice — Cavalieri et al. (1996) 1 d 25 km compiled passive microwave data

Surface wind speed W Dee et al. (2011) 6 h 1° ERA Interim (ECMWF)

Absorbing aerosol index AAI de Graaf et al. (2018) GOME-2 pixels GOME-2A level 2, version 1.01
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Figure 4. Illustration of average MSC (a) and PMD (b) point spread functions (PSF) used as convolution kernels for LSM, elevation, sea-ice

and snow-concentration maps. The PSF correspond to a nominal GOME-2 swath width of 1920 km. The native MICRU Tmin resolutions for

MSC and PMD evaluation (denoted: binning #1) are 0.1° × 0.05° and 0.0125° × 0.05°, respectively (cf. Table 6).

2.1.2 Auxiliary data for MICRU

The MICRU algorithm requires several external data sets listed in Table 3. Two different strategies of co-locating these data

to the GOME-2 observations are applied depending on the spatial resolution. Data provided at spatial resolutions significantly

higher than the generic GOME-2 resolution are convolved with the respective average MSC and PMD point spread function

(PSF) as depicted in Fig. 4. The average PSFs are derived from all forward scan pixel edges from one orbit of GOME-2A data5

at latitudes lower than 55°. This approach simplifies the interpolation of auxiliary data on GOME-2 observations because a

linear interpolation can be performed based on the GOME-2 pixel center alone while providing still sufficient spatial accuracy.

Data provided at coarser resolutions than GOME-2 are linearly interpolated based on the GOME-2 pixel center without prior

convolution.

One of the main features of MICRU is the separate parametrisation for measurements over land and ocean, respectively.10

Therefore, an accurate discrimination between land and ocean is crucial for the accuracy of MICRU at coasts. The land sea
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mask (LSM) is compiled from revision 679 of the GSHHG coast line database (Wessel and Smith, 1996; NOAA, 2018) whose

polygon data is first sampled at 0.1° × 0.05° and 0.0125° × 0.05° for MSC and PMD, respectively, and then convolved with the

corresponding PSF (cf. Figure 4). The LSM is processed at eight times higher longitudinal resolution for PMD compared to

MSC taking advantage of the smaller PMD pixel size. The LSM is compiled from intermediate GSHHG resolution neglecting

polygons smaller in area than one GOME-2 pixel.5

The second important input is the surface elevation h required for the inversion of T (Sect. 2.2). Elevations maps are inferred

based on GTOPO30 raw data, which are averaged on a 0.05° × 0.05° grid, and convolved with a mean PSF sampled on the

same grid resolution. Interpolation to GOME-2 resolution is again performed applying nearest neighbour interpolation.

Snow and sea ice data are queried to flag possible interferences from highly reflecting surfaces during post-processing

(Sect. 2.5.3). Snow data is imported from MODIS Terra measurements with a similar equator-crossing time of 10:30 in de-10

scending node similar to GOME-2. Hence, possible effects of different orbital parameters are supposed to be reduced. We

used the 8-day composite MOD10C2 product (Hall and Riggs, 2016). Spatio-temporal interpolation uses the nearest neighbour

method based on spatially convolved 8-day maps as described above.

Sea ice data is provided by the National Snow & Ice Data Center (NSIDC) and integrates micro-wave measurements from

different sensors (Cavalieri et al., 1996). It has a native resolution of 25 km×25 km, which is convolved using average PSFs15

on 0.1° resolution before merging to GOME-2. Data voids at the poles are filled with values from the nearest valid latitude.

Unfortunately, there is no information on the sea ice concentration close to shores in the applied data set. This limitation leads

to interferences at shores at high latitudes because GOME-2 pixels possibly affected by sea ice may not be filtered a-priori.

Information on wind speed for the calculation of contributions from sun glitter is extracted from ERA-Interim data provided

by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Dee et al., 2011). ECMWF 10 m-wind fields are20

used to parametrise sun glitter. As proposed by Ebuchi and Kizu (2002), the ECMWF wind fields are divided by a factor of

0.918 to approximate the wind speed at 41 ft (≈ 12.5 m) above the surface, which is required as input for the sun glitter model

by Cox and Munk (1954a). This factor corresponds to a drag coefficient of 0.0015 assuming neutral stratification (Ebuchi and

Kizu, 2002). ECMWF data is imported at 1° and 6 h spatial and temporal resolution, respectively. Spatially, nearest neighbour

interpolation is applied based on GOME-2 pixel centers.25

Absorbing aerosol indices (AAI) are also used to mask measurements potentially biased by aerosol effects (AAI > 2). For

this purpose, AAI data inferred from GOME-2 measurements at both MSC and PMD resolutions is used (de Graaf et al., 2018).

Hence, no interpolation is required to merge MICRU and AAI data.

2.2 RT calculations and inversion of LER

The conversion between surface LER T and measured TOA reflectance R applies a look-up table (LUT) based on reduced re-30

flectances R̂= I/E0 =Rcosθ0/π. The LUT entries are pre-computed using the SCIATRAN software version 3.7.1 (Rozanov

et al., 2014; IFE-Bremen, 2018). The LUT has 5 dimensions: SZA, VZA , RAA, surface height h and surface LER T . Table 4

compiles the LUT nodes as well as the wavelengths applied as described in Sect. 2.1.1. The LUT nodes in SZA and VZA direc-

tion are defined in reduced angles µ0 = cosθ0 and µ= cosθ, respectively, in order to provide more nodes at angles featuring

11
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Table 4. Definition of LUT nodes: reduced SZA µ0, reduced VZA µ, RAA φ, surface height h, and surface LER T . The 5-D LUTs are

calculated for 19 wavelengths λ.

Parameter Nodes

µ0 = cosθ0 1.00, 0.975, 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50,

0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10, 0.05 (21 total)

µ= cosθ 1.000, 0.9875, 0.975, 0.950, 0.925, 0.900, 0.875, 0.850, 0.825, 0.800,

0.775, 0.750, 0.725, 0.700, 0.675, 0.650, 0.625, 0.600, 0.575, 0.550,

0.525, 0.500, 0.475, 0.450, 0.425, 0.400, 0.375, 0.350, 0.325 (29 total)

φ [°] 0 . . . 180, in steps of 15 (13 total)

h [km] 0, 1.4, 3, 4.8, 7 (5 total)

T 0 . . . 1, in steps of 0.1 (11 total)

λ [nm] 375, 382, 388, 389.7, 413, 424.5, 425, 433.4, 440, 460, 519, 521.8, 554,

589, 639, 670, 681, 757.5, 799 (19 total)

larger gradients. The linear interpolation between the nodes is performed in θ0 and θ space, respectively, in order to increase

numerical stability at nadir.

The vector RT calculations are performed in spherical geometry based on a US standard atmosphere with 1013 hPa surface

pressure at h= 0 m. The surface is treated as a Lambertian reflector. The model accounts for molecular absorption by O3 and

O4. The O3 column is fixed to 250 Dobson Units (DU). Aerosols and Raman scattering are not included in the simulations.5

From the LUT, the R̂(T ) relation is interpolated for all observation geometries except for h< 0 km, which are tweaked to

h=0 km. R̂(T ) is monotonic and, therefore, T (R̂) can be readily inverted. We apply linear interpolation to infer T (R̂).

2.3 Tmin retrieval

The Tmin MICRU algorithm requires a certain number of measurements in order to constrain its model parameters using obser-

vations not contaminated by clouds. For the description of the algorithm, we define a base set of measurements Ω0, which are10

spatially and temporally correlated. It is noted that Ω0 is a subset of all available measurements depending on grid resolution,

measurement resolution, time period, surface structure, and cloud statistics. Section 2.5.1 describes the implementation of the

subsetting process.

MICRU defines Tmin depending on the measurement geometry (θ0, θ, φ), geolocation, and time t. Tmin is not a true LER

because it contains geo-physical and instrumental information. This information is not separated within MICRU and will be15

treated simultaneously as the ultimate goal is to determine a parametrisation of Tmin as accurately as possible. In general, it is

not possible to parametrise Tmin in full (θ0, θ, φ)-space due to the sun-synchronous orbit of GOME-2 (Sect. 2.1.1). At every

latitude, the dependencies of SZA and RAA on both VZA and time repeat annually. The dependence of SZA and RAA on

12
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Figure 5. SZA depending on time and VZA at 45°N latitude. Data bins correspond to 24 discrete forward scan pixels and individual days in

x- and y-direction, respectively. GOME-2A performs a sun-syncronous orbit at a fixed inclination to the sun. Hence, the SZA unambiguously

depends on time, VZA, and latitude.
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Figure 6. Same as Fig. 5, but showing the RAA at 45°N latitude.

VZA and time are exemplarily depicted for 45°N latitude in Figs. 5 and 6, respectively. It is therefore sufficient to parametrise

the observation geometry (in each bin) by θ and t.

Ω0 typically contains a significant number of observations contaminated by clouds. Cloudy observations need to be filtered

in order to retrieve a Tmin parametrisation based on cloud-free observations. Therefore, an iterative filter algorithm to find the

13
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lower accumulation point by Grzegorski et al. (2006) is presented in Sect. 2.3.2. Compared to HICRU, however, the MICRU

algorithm generalizes from zero to four dimensions.

2.3.1 Tmin model

The MICRU Tmin model is

y(t̂, θ̂, θs, rg) = a0 + att̂+ ya(t̂, θ̂) + as cosθs + agrg (4)5

applying 4 independent variables t̂, θ̂, θs, and rg and 7 dependent variables a0, at, ap, aa0, aa1, as, and ag , which are intro-

duced in the following. Equation (4) is an empirical parametrisation accounting for actual and systematic effects of the lower

threshold, which are not linearly independent in general.

Equation (4) applies normalized time t̂ and normalized VZA θ̂ instead of t, and θ as independent model parameters to

improve fit stability. Assuming t measures in unit days, we then define the normalized time10

t̂=
t− t0

365.25days
(5)

measuring in unit years centred on t0. In case of GOME-2A, t0 is chosen so that t̂= 0 for 1 January 2010. θ measured in unit

degrees and the normalised VZA

θ̂ = θ/55◦ (6)

ranges between -1 and 1.15

The two further model parameters are the scattering angle θs defined by

cosθs = sinθ0 sinθ cosφ− cosθ cosθ0 (7)

and the reflected sun angle θr defined by

cosθr = sinθ0 sinθ cosφ+ cosθ cosθ0 . (8)

Both angles are also illustrated in Fig. 1.20

The right-hand side of Eq. (4) is the sum of the following terms.

1. The constant offset a0 accounts for the mean surface LER.

2. Residual line-of-sight dependencies are modelled by a second order polynomial (Fig. 7), which is parametrised by the

normalised apex angle θ̂a and curvature ap:

ya(θ̂) = ap

(
(θ̂− 2θ̂a)θ̂+ θ̂2a

)
. (9)25

14
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Figure 7. A second order polynomial parametrised by apex angle and curvature models systematic VZA dependencies of the lower threshold

Tmin. Degradation may affect both apex angle and offset. The position, amplitude, and width of the sun glitter contribution depends on

observation geometry and wind speed.

3. Temporal degradation is assumed by a linear offset degradation factor at and the time dependent normalised apex angle

θ̂a(t̂) = aa0 + aa1t̂ (10)

as indicated by the arrows in Fig. 7. Tests applying a second order polynomial or an exponential to model degradation

of GOME-2 MSC data were not successful. The former does not improve results significantly and the latter deteriorates

the stability of the fit.5

4. BRDF effects are modelled by an empiric cosθs term. Its inverse shows a similar behaviour like the Li-dense kernel for

closed canopy (Li and Strahler, 1992; Wanner et al., 1995) but does not require any further parameters. This term models

the annual oscillations particularly visible at the western swath edge in Figs. 8(d,e) and 8(d,e).

The cosine normalises the parameter improving the fit stability. As a test, we replaced the empirical term with the precise

Li-dense kernels and, secondly, with a reduced cosθr term for surface effects. Both tests, however, resulted in inferior10

results. Furthermore, cscθs and cos2 θs terms were applied but both lead to slightly but systematically inferior results in

a number of case studies.

5. The contribution of sun glitter on water surfaces is parametrised based on the isotropic sun-glitter model suggested by

Cox and Munk (1954a, b). This model was found to be sufficiently accurate for MICRU and, according to Zhang and

Wang (2010), performs reasonably well compared to competing models in their study. We apply the glitter reflectance15

rg as provided by Eqs. (1–4), (9), and (15) in (Zhang and Wang, 2010). According to Cox and Munk (1954a), the mean

square slope of the clean surface is

σ2 = 0.003 + 5.12 × 10−3W (11)

15
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Table 5. List of Tmin model parameters with initial values (β0) and parameter bounds of the constrained non-linear fit.

Symbol Comment β0 Range

a0 offset variable −∞ . . .∞
at offset degradation 0 −0.02 . . . 0.02∗

ap polynomial amplitude 0.02 0 . . . 0.2

aa0 normalised apex angle 0 −5 . . . 10

aa1 apex degradation 0.02 −0.5 . . . 0.5∗

as scattering amplitude 0 −0.5 . . . 0.2

ag glitter amplitude 0.2 0 . . . 0.4

∗: Degradation constrained to 0 for MSC channels 12, 13, and 14.

where W is the wind speed at 41 ft (≈ 12.5 m) above sea level, which is computed from 10 m-wind speeds as described

in Sect. 2.1.2. The index of refraction is set to n=1.34 (Blum et al., 2012). Hence, rg as illustrated in Fig. 7 is a function

of θ0, θ, φ, and W .

Table 5 summarizes the Tmin model parameters and the bounds of the constrained fit. Clearly, this model is a trade-off

between accuracy and stability. Choosing a model based on more parameters would increase the accuracy of modelling the5

physical effects but degrade the stability of the fit limited by the number of cloud-free observations.

2.3.2 Iterative surface fitting

MICRU applies an iterative threshold technique to retrieve the lower accumulation point Tmin. The method is similar to the

threshold method applied by HICRU (Grzegorski et al., 2006), where Rmin is assumed to only depend on time and viewing

direction. For HICRU, this dependency could be resolved manually because the number of discrete VZAs was small, and,10

therefore, the lower accumulation point could be efficiently retrieved in an image processing manner. MICRU, however, as-

sumes a more complex behaviour of Tmin and therefore incorporates a nonlinear least-squares fit in every iteration of the lower

accumulation point determination algorithm.

The basic idea behind iterative surface fitting is that the lower envelope of measurement set Ω (blue dots in exemplary

Figs. 8(b) and 9(b)) is approximated by iteratively filtering measurement tuples (t̂, θ̂, θs, rg,T ) ∈ Ω fulfilling15

T > y(β) + τ (12)

where y(β) is the fit result and τ is a positive threshold. β denotes the result vector of Eq. (4)

β = [a0,at,ap,aa0,aa1,as,ag] . (13)

The accuracy and the convergence of the method depend on the choice of τ (Grzegorski et al., 2006), the applicability of the

Tmin model, the stability of the surface fit, and the initial values β0. Compared to HICRU, MICRU introduces two improve-20

ments: (1) an adaptive scaling of τ reducing the number of a-priory assumptions, and (2) the application of a surface fit. The

16
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Figure 8. Example surface fit for MSC channel 2 at 382 nm and applying binning 2 over Australia: (a) The bin of interest ranges from 131°E

to 132°E longitude and from 20°S to 21°S, (b) 3D representation of measurement set Ω0 (red) and finally fitted set ΩI (blue), (c) frequency

distribution of the fit residual, (d) lower accumulation point within each individual 0D-box, (e) surface fit result using model Eq. 4; and (f)

difference of (d) and (e). The discretisation chosen for (d)–(f) displays a trade-off between accuracy and noise for the sake of clarity. Negative

VZA denote the western half of the swath.

surface fit incorporates parameter constraints (Table 5) and therefore the trust-region-reflective algorithm (Coleman and Li,

1994, 1996) is applied.

The initialisation of the fit defines β0 and an initial selection vector V0. The selection vector Vi defines the subset of mea-

surements Ωi+1 = Ω(Vi), on which the (i+1)-th iteration of the surface fit is applied. Table 5 provides initial values β0 except

for a0, which is set to the median of T (Ω). V0 is set true for all LER measurements fulfilling T < a0 +σ0, where σ0 is the5

standard deviation of residual vector R = T − y(β0). The initial threshold τ0 is set to 0.012.

The i-th iteration consists of the following steps: Fit Eq. (4) to Ωi with initial guess βi−1 yielding βi. The residual vector is

then R = T − y(βi) defining the measurement set used in the next iteration through

Ωi+1 = {Ω|R< τ ∧R>−3σR} (14)
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Figure 9. Same as Fig. 8, but for MSC channel 10 at 516.7 nm and applying binning 5 over the equatorial Atlantic. The set of measurements

ranges from 30°W to 27°E longitude and from 7.55°S to 5°S.

where σR is again the standard deviation of R. The second condition in Eq. (14) filters outliers of the measurements distribution

towards −∞.

After that, the threshold for the next iteration is determined. τi+1 depends on the retrieved mean T , that is the threshold

becomes larger for brighter surfaces. The adjustment is retarded to steps of δτ = 0.002. The upper limit τmax is defined. τmax

increases linearly with y(βi): τmax = τ0 for y(βi) = 0 and τmax = 0.1 for y(βi)=1. Then, τ is increased if5

τi < τmax⇒ τi+1 = τi + δτ

or decreased if

τi > τ0 ∧ τi > τmax + δτ ⇒ τi+1 = τi− δτ.

Iterations terminate if at least one of the following four conditions is true: number of iteration steps exceeds imax = 40,

invariance of selection vector (Vi+1 =Vi), invariance of result vector (βi =βi−1), or Ωi+1 includes less than 8 data points.10
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The result is β =βi corresponding to a remaining set Ωi (red dots in Fig. 8(b)) defining Tmin as a function of t̂, θ̂, θs, and

rg in a specific geo-spatial bin. Diagnostic metrics for filtering (Sect. 2.5.3) are the number of elements in Ωi, its ratio to the

number of elements in Ω0, and the number of iterations i.

2.4 Determination of Rmax

The upper threshold Rmax is defined as the reflectance of a Lambertian surface with an albedo of 0.8 located at 7 km altitude.5

Rmax is assumed independent of geolocation and time. A quantitative discussion of choosing Tmax = 0.8 as a cloud albedo for

an Lambertian cloud model as upper threshold is provided by Stammes et al. (2008). As a consequence, however, very bright

clouds exceeding Tmax = 0.8 will result in a MICRU CF > 1. It should be noted that potential instrumental degradation may

introduce a systematic bias of the CF, which will be strongest for large CF. Most importantly for MICRU, the effect of this

simplification on the accuracy of small CF is negligible. Furthermore, Rmax is calculated applying the look-up-tables described10

in Sect. 2.2 and Table 4.

2.5 Implementation

The MICRU algorithm consists of several consecutive steps: Import of data, RT simulation, merging of external data, determi-

nation of Rmin, determination of Rmax, and finally the computation of CF. The following subsections detail the implementation

of the methods described above in the MICRU framework.15

2.5.1 Geospartial subsetting

The Tmin algorithm (Sect. 2.3) requires a spatio-temporal subset of satellite measurements with a sufficient number of mea-

surements. Section 2.1.2 describes how GOME-2 pixels are reduced to their centres. Hence, geospatial locations can be readily

indexed and assigned to geospatial subsets. All MICRU computation refers to pixel centres rather than their actual area. This

simplification takes advantage of the fact that the surface is scanned by almost identically shaped ground pixels over the20

evaluated measurement period, and, therefore, measurements with identical pixel center are congruent.

Temporally, larger subsets should be favoured over smaller ones unless there are significant changes of surface properties or

the instrument response degrades much differently than considered in the model (Sect. 2.3.1). Longer time-series increase the

probability of including measurements not contaminated by clouds.

Spatially, a very small geospatial interval would be beneficial in order to increase the correlation between measurement and25

collocated Tmin where the true surface is inhomogeneous. However, there is a trade-off because the probability of including

enough cloud-free measurements decreases if the geospatial interval becomes too small. If there are not enough cloud-free mea-

surements, the accuracy of the fit degrades. Furthermore, spatial subsampling can be avoided using spatial sampling intervals

larger than the native resolution of the measurements defined by its PSF.

Within MICRU, the geospatial subsetting is called binning, which is performed on a longitude-latitude grid. Each binning30

corresponds to a global map at a different resolution. The Tmin retrieval is independently applied on each binning, whose defini-
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Table 6. Spacing of meridians (∆λ) and parallels (∆ϕ) for the definitions of tiling and binnings for MSC and PMD evaluations, respectively.

Binning resolutions depend on surface type: land (s = 1) and ocean (s = 2).

MSC PMD

# s ∆λ ∆ϕ ∆λ ∆ϕ

tiling 45° 15° 15° 5°

binning 1 1 1° 0.5° 0.125° 0.5°

2 1 1° 1° 0.5° 1°

3 1 3° 2.5° 2.5° 2.5°

4 2 1° 0.5° 0.125° 0.5°

5 2 3° 2.5° 2.5° 2.5°

6 2 15° 2.5° 15° 2.5°

7 2 45° 2.5° 15° 5°

tion distinguishes between measurements over ocean and land. The results are then merged to form a complete parametrisations

of Tmin for ocean and land surfaces independently. There are several advantages of this approach.

1. If, for some reason, the fit fails using the highest resolution, the parametrisation results from evaluation using larger bins

may be used instead.

2. The bin dimensions can be adapted to the surface type: smaller and approximately quadratic over land, larger and less5

depending on longitude over ocean.

3. It enables independent parametrisations for the two different surface types. Hence, Tmin gradients at the coast can be

mitigated.

Table 6 details and Fig. 4 illustrates the MICRU binnings for GOME-2 MSC and PMD evaluations, respectively. Figure 8(a)

illustrates the dimension and location of bin 25152 of MSC binning 2.10

The entire data set needs to be resorted with respect to geolocation instead of acquisition time for computational purposes.

Therefore, input data is organised in geospatial tiles as defined in Table 6, which reduces the memory requirement for a process

performing the iterative surface fitting per bin (Sect. 2.3.2). Tiling furthermore enables parallel processing of MICRU on a

cluster because each sub-process only requires a small portion of the observational data. Hence, scaling MICRU to sensors

different from GOME-2 is straight-forward by adjusting the tile resolution.15

2.5.2 Tmin maps

The following filters are applied on the input data prior the Tmin-retrieval:

– Filter measurement in ascending node to avoid ambiguities of the time and latitude dependent θ-selection.
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– Filter viewing modes other than the nominal 1920 km swath (EUMETSAT, 2015). For example, this filter excludes nadir

static and narrow swath orbits as well as data recorded after June 2013.

– Filter SZA larger 85°.

– Filter data possibly affected by solar eclipses as defined in Appendix B of (Tilstra et al., 2017a).

– Filter times of instrumental malfunction as listed in (EUMETSAT, 2014).5

– Filter measurements with AAI > 2.

– Filter measurements, which include neither > 90% land nor > 90% ocean.

– Over ocean, filter measurements with θr < 8° (sun glitter).

Then, the Tmin-algorithm (Sect. 2.3) is applied on the measurement tuples within each bin. Figures 8 illustrate the Tmin-

algorithm applied on MSC channel 2 for a 1° × 1° bin over Australia. Similarly, Fig. 9 illustrates the same on MSC channel10

10 data at 516.7 nm over the Atlantic Ocean. This step is repeated for all binnings listed in Table 6 and all channels listed in

Tables 1 and 2 for MSC and PMD, respectively. For diagnostic purposes, the number of iterations i, the number of included

measurementsN , the number of fitted measurementsN∗, threshold τ , and residual statistics are intermediately stored alongside

the fit result β for diagnostic purposes.

Tiled Tmin results are stitched together to form global maps for all binnings and channels. For each channel, the maps of15

different resolutions need to be merged in order to obtain two complete and unambiguous β maps, respectively one for ocean

and one for land. The steps of the merging process are detailed in Appendix A. Appendix B presents exemplary results for

MICRU channel 02.

2.5.3 CF calculation and flagging

Once Rmin and Rmax are determined, c can be computed using Eq. (1) for all MICRU channels separately. The MICRU data set20

furthermore provides several quality flags listed in Table 7. MICRU MSC and PMD data are merged with three aliasing offsets

m= 0,1,2 (Sect. 2.1.1) for the investigation of the spatial aliasing in Sect. 3.3.3.

2.6 Comparison data

For GOME-2 MSCs, FRESCO+ cloud fractions evaluated at the O2-A band are probably the most commonly used CF product

(Wang et al., 2008; TEMIS, 2019). In this study, three different versions of the FRESCO cloud fractions are applied:25

FRESCO L1b denotes the CF data shipped with the L1b files from EUMETSAT, also denoted FRESCO version 6. This

FRESCO version applies a background map compiled from MERIS measurements over land and GOME-1 surface LER

over ocean (Popp et al., 2011; Tilstra et al., 2017b).
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Table 7. Flags applied by the MICRU algorithm allowing for individual filtering.

Flag Description

Coast warning if > 10% land and >10% ocean

AAI warning if AAI > 2

Snow warning if MODIS 8-day snow concentration > 5%

Sea ice warning if micro-wave sea-ice concentration > 5%

Sunglint warning if θr < 36° over ocean or θr < 8° over land

Sunglint risk if θr < 8° over ocean

Statistics warning if N < 80 or if the mode of R > 0.1

Coarse mode if the applied binning is neither 1 or 4

Extrapolated parameters if the applied parametrisation is extrapolated

FRESCO v7 is the first FRESCO version applying a background LER map derived from GOME-2 measurements themselves

(Tilstra et al., 2017b).

FRESCO v8 is the most recent version applying a directional LER database compiled from GOME-2 measurements. The

resolution at the coast is increased to effects of both surface types within one GOME-2 pixel.

FRESCO L1b data of the entire evaluation period is included in this study. For FRESCO v7 and v8, however, comparisons5

to MICRU are limited to selected months. For FRESCO v7, it is January, April, July, and October 2010. For FRESCO v8, it is

January to December 2010 plus April 2007 and 2013 (cf. Figs. 21(b) and (c)). The applied FRESCO products do not correct for

interferences with sun glitter. It is furthermore noted that MICRU data are ignored in the comparisons in Sect. 3.4 if respective

OCRA/FRESCO data are invalid.

MICRU PMD results are also compared to OCRA cloud fractions inferred from GOME-2 PMD measurements described by10

Lutz et al. (2016). In its actual version 3.0, OCRA is mainly developed as the operational CF product for the S-5P/TROPOMI

mission. In contrast to FRESCO, OCRA applies an empirical correction scheme for the sun glint effect (Lutz et al., 2016).

The selected cloud products define the upper threshold differently. FRESCO applies a Lambertian (or reflecting) cloud model

– like MICRU – and OCRA applies a volumetric (or scattering) cloud model (Wang et al., 2008; Lutz et al., 2016). Furthermore,

the treatment of extreme CF significantly differs between MICRU, FRESCO, and OCRA. Some FRESCO both and OCRA15

provide normalised CF, which means that CF do not linearly scale with reflectance. OCRA, for example, normalises CF < 0 to

0 and CF > 1 to 1. For FRESCO, normalisation schemes defer between versions: FRESCO L1b sets CF < 0 to 0. For CF > 1,

all FRESCO version vary the cloud albedo to improve convergence. In contrary, MICRU does not apply any normalisation by

default leading to an unlimited CF distribution. We define cropped subsets of data: CF < 0 are set to 0 and CF > 1 are omitted

from statistical comparisons (Sect.3.4) in order to avoid systematic bias from different normalisation strategies. It shall be noted20
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that both normalisation and cropping lead to biased mean results. These biases propagate into trace gas retrievals if normalised

CF data are applied.

Finally, measurements by the AVHRR/3 (Advanced Very High Resolution Radiometer version 3) instrument are applied as

independent measurements for the detection of clouds from the MetOp satellite (Cracknell, 1997; NOAA, 2017; EUMETSAT,

2011). AVHRR is an imager with six spectral channels centred between 630 nm and 12 µm. The spatial sampling of GOME-25

and AVHRR is detailed by Sihler et al. (2017). In this study, AVHRR data of bands 1, 2, and 3a is applied to produce RGB

false colour images. Furthermore, an artificial AVHRR cloudmask is constructed, where an AVHRR pixel is assumed cloudy

if either the Albedo test, or the T4-T3 test, or the T4-T5 test indicates a cloudy scene (cf. EUMETSAT, 2011).
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3 Results

This section starts off with results from the Tmin retrieval (Sect. 3.1) and a comparison between MICRU, FRESCO, OCRA

based on single, cloud-free swaths (Sect. 3.2). Subsequently, statistical ensembles are applied to intercompare MICRU CF

results (Sect. 3.3), and to evaluate differences between the three CF algorithms (Sect. 3.4).

Studies on monthly statistics exclude data where5

– SZA≥ 84°,

– latitudes ≥ 55°,

– MODIS snow concentration > 2%,

– AAI > 2,

– the sunglint risk flag is raised, or10

– the coast warning is raised (exception: average maps)

in order to reduce interferences.

3.1 Tmin retrieval

Figure 8 illustrates the input measurements and output results of the Tmin-retrieval (Sect. 2.3) applying MSC channel 2 at

382 nm and binning 2 over continental Australia. The blue dots in Fig. 8(b) denote the input data omitting scattering angle15

θs and glitter reflectance rg dimensions for the sake of clarity. Figure 8(d) shows a matrix of lower aggregation points of T

retrieved independently in discrete boxed defined in the t/θ-plane. The lower aggregation points are retrieved with the same τ

as resulting from the surface fit but without parametrisation. The matrix reveals an increasing trend with time and a significant

VZA-dependence. The iterative surface fitting result using the same data (Fig. 8(e)) shows a similar but much smoother result

due to improved statistics by combining the information from all measurements and applying a parametrised surface model.20

Figure 8(f) shows the difference between boxed and fitted results indicating average deviations much smaller than 0.04, which

is the targeted accuracy of MICRU CF. There are, however, small systematic deviations towards the edges indicating a slight

overestimation of Tmin at the beginning of the sensing period (2007) and at large VZA and slight underestimation at the end

of the period (colder colors for 2013). The histogram of the residual R of LER measurements and modelled Tmin is plotted in

Fig. 8(c) using the respective colors as in Fig. 8(b). Measurements applied for the final iteration of the surface fit peak between25

-0.01 and 0, for which a final threshold of τ = 0.018 is applied.

Figure 9, in contrary to Fig. 8, illustrates the application to another MSC channel at 516.7 nm and surface type ocean.

Compared to Australia, the fraction of fitted measurements is significantly lower due to a higher probability for clouds. The

smaller fraction of fitted measurements is also indicated by a less pronounced peak in the histogram (Fig. 9(c)). There is a

significant contribution of sun glitter, which is visible by the annually appearing red areas at positive VZA in Figs. 9(d) and30
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Figure 10. Detailed fit results from surface of three GOME-2 bands measured over Australia (cf. Fig. 8(a)), comparing the fit results with

measurements selected from the beginning (blue dots) and the end (green dots): (a) MSC channel 02, the fit results (red lines) correspond

to 8(f), (b) for PMD-PP, and (c) for PMD-SP. Note the significant differences between the residual VZA-dependences and their trends of

three GOME-2 bands measuring at the same wavelength of 382 nm. Note that reflectance measurements below the red line will later result

in negative CF.

(e). The scatter in Fig. 9(f) collocated with the regions affected by sun glitter is probably due to poor statistics when calculating

the boxed comparison results. The CF in the first, western-most column of boxes seem to be biased low of the order of 0.01

compared to other viewing angles.

Figure 10 investigates trends of the VZA-dependence for the three GOME-2 channels MSC, PMD-PP, and PMD-SP but

same spectral region, respectively. Figure 10(a) corresponds to the first and last row in Fig. 8(d/e), indicated by blue and green5

dots, respectively. Circled dots correspond to the red dots in Fig. 8(b). The red lines correspond to the fit results shown in 8(e).

Figure 10(a) reveals a lower threshold increasing with time (≈ 0.02 in total) and a time-dependent VZA-dependence affecting

apex VZA and curvature. Figures 10(b) and (c) illustrate the temporal behaviour of the corresponding PMD-PP and PMD-SP

measurements. For PMD-PP, the VZA-dependence and its degradation is smallest compared to the other channels. PMD-PP,

however, features a significantly larger overall trend compared to PMD-SP in Fig. 10(c). For PMD-SP, the overall trend is10

small, but the VZA-dependence degrades significantly more than MSC channel 2.

3.2 Cloud-free observations

Figure 11 compares cloud-free measurements of MICRU, OCRA, and FRESCO over three exemplary sites featuring different

surface cover (left to right): rainforest, continental mid-latitudes, and ocean. Independent AVHRR measurements are included

to identify essentially cloud-free scans (top row).15

MICRU MSC and PMD results show no significant cloud-cover where also AVHRR does not detect clouds. Purple colours at

the swath edges, however, indicate biased low CF results (Figs. 11(d)–(i) in cloud-free observations over both land and ocean.

Over land, the MICRU results are consistent with the AVHRR cloud mask, e. g. CF contributions of singular clouds smaller
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than the GOME-2 pixel sizes are reproduced in Figs. 11(e) and (h) over North America. The bias of cloud-free observations is

small and the colorbar range almost does not resolve the scatter around zero CF.

In case of sunglint, the situation is more complex. In Figs. 11(f) and (i), MICRU measurements scatter significantly as

indicated within the area flagged with a sunglint warning (green edges). The scatter is only significant in the eastern swath

(orbit 17907) whereas the western swath (orbit 17908) shows almost no scatter. The analysis of the wind fields (not plotted)5

reveals that wind speeds vary between 0 and 5 m/s for the cloud-free region of the eastern swath and between 3 and 4 m/s in

the western swath, respectively. The interpolation of the wind fields is apparently not accurate enough for the eastern swath.

The interpolation is limited by a spatial resolution of 1° and a temporal resolution of 6 h. Hence, MICRU CF may be over- and

underestimated in case of heterogeneous wind situations and especial for very low winds. We conclude, however, that MICRU

is capable to model moderate Rmin contributions by sun glitter. When sun glitter is large (in case of low winds), as indicated10

by yellow colours in the false colour background image of Fig. 11(c), this corrections is less reliable. Therefore, measurements

flagged with a sunglint warning are screened from the statistical comparison studies below.

Figure 11 furthermore compares MICRU results to FRESCO and OCRA. Over land, the CF maps of FRESCO L1b and v7

measurements (Figs. 11(j), (k), (m), and (n)) reveal significant positive biases in the western part of the swath. Cloud fractions

larger than 20% are detected even though AVHRR and MICRU both detect no clouds. FRESCO v8 displays a significant15

improvement over Brazil (Fig. 11(p)), whereas CF over North America in Fig. 11(q) are still significantly biased in the west

of the swath. Switching to OCRA, Fig. 11(s) reveals significantly smaller positive biases of OCRA over Brazil compared to

FRESCO L1b and v7. Over North America (Fig. 11(t)), however, a positive bias and scatter are significant.

Over ocean (right column in Fig. 11), biases in regions possibly affected by sun glitter are obvious in the FRESCO and OCRA

data. FRESCO products are not correcting for this interference leading to systematic positive biases because the increased20

intensity is apparently interpreted as reflecting clouds (Figs. 11(l), (o), and (r)). In contrary to FRESCO, OCRA corrects for

the sun glint effect in the centre of the affected region (Fig. 11(u)), but interferences still persist for θr < 36°, which is flagged

by MICRU as sunglint warning.
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Figure 11. Detailed comparison between different cloud fraction products over cloud-free scenes over land and ocean: Brazil on 10 April

2010 (left column), North America on 8 April 2010 (second column), and the Indian Ocean on 2 April 2010. The rows display cloud

information from different sensors/products (from top to bottom): AVHRR false colour RGB image indicating areas, where at least one

AVHRR cloud test is positive (orange), MICRU MSC at 440 nm, MICRU PMD-PP at 460 nm, three FRESCO versions, and OCRA. The

colour bar is defined to resolve cloud fractions particularly below 0.3 and negative values. Areas without data are indicated in grey. Images

in the right column contain swath data of two orbits featuring different sun glitter scenarios due to different wind contitions (see text).27
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 MICRU MSC channel 08 (440.0nm): mean CF 07/2007-06/2013
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Figure 12. Six year average of MICRU MSC channel 8 cloud fraction measurements recorded between 1 July 2007 and 30 June 2013. Areas

without data are plotted in gray. See Figs. E1 through E5 for comparison.

3.3 MICRU

3.3.1 Global average cloud fraction

Figure 12 shows a global map of the average MICRU cloud fraction of six consecutive years using GOME-2A measurements.

Therefore, it is a snapshot of the average CF at 9:30 in morning. The averaging period starts in July 2007 and ends in June

2013. The map clearly reveals a statistically increased CF at the Intertropical Convergence Zone (ITCZ), off the west coasts of5

continents in the sub-tropics, and the sub-polar oceans. The comparatively high average CF over China indicates a significant

bias due to aerosol scattering. Similar plots for MICRU PMD, FRESCO and OCRA are described in Appendix E.

3.3.2 MSC intercomparison

Figure 13 shows correlation density plots and bivariate fits (Cantrell, 2008) of MICRU CF for channel 2, 12, and 14 with

respect to MICRU channel 8 (cf. Table 1).10

The comparison between MICRU evaluations at 382 and 440 nm shows an almost perfect correlation of r2 =0.997 in

Fig. 13(a). The slope reveals a minute positive bias. Figures 13(b) and (c) reveal significantly increased scatter for comparisons

with longer wavelengths, which is dominated by increased heterogeneities of the land surface reflectance because the scatter

is almost independent from wavelength over ocean (not shown). It is important to note that in Figs. 13(b) and (c) the scatter

28

https://doi.org/10.5194/amt-2020-182
Preprint. Discussion started: 18 May 2020
c© Author(s) 2020. CC BY 4.0 License.



MSC channel 08 vs. 02

N = 2723907

y = 1.0524x - 0.0044

r
2

 = 0.997

0 0.5 1 1.5

MSC cloud fraction @ 440nm

0

0.5

1

1.5

M
S

C
 c

lo
u

d
 f

ra
c
ti
o

n
 @

 3
8

2
n

m

MSC channel 08 vs. 12

N = 2723915

y = 0.9907x + 0.0102

r
2

 = 0.989

0 0.5 1 1.5

MSC cloud fraction @ 440nm

0

0.5

1

1.5

M
S

C
 c

lo
u

d
 f

ra
c
ti
o

n
 @

 6
7

0
n

m

MSC channel 08 vs. 14

N = 2723788

y = 0.9963x + 0.0072

r
2

 = 0.985

0 0.5 1 1.5

MSC cloud fraction @ 440nm

0

0.5

1

1.5

M
S

C
 c

lo
u

d
 f

ra
c
ti
o

n
 @

 7
5

7
.5

n
m

10
0

10
1

10
2

10
3

10
4

10
5

F
re

q
u
e
n
c
y

(a) (b) (c)

Figure 13. Comparison between MICRU MSC channel 8 at 440 nm and MSC channels (a) 2 at 382 nm, (b) 12 at 670 nm, and (c) 14 at

757.5 nm for April 2010. The plots correspond to the combinations indicated by circles in Fig. D1(a).

in y-direction for small |cx| is larger than the scatter in x-direction for small |cy|. This indicates that the accuracy of CF is

decreasing towards larger wavelengths.

Appendix D comprehensively compares results from MICRU channels and other cloud products.

3.3.3 MSC vs. PMD

Figure 14 shows CF comparison plots of two corresponding MSC/PMD evaluation. A spatial aliasing of m= 0 is chosen for5

the comparison at 382 nm in Fig. 14(a) andm= 1 519 nm in Fig. 14(b), respectively. According to Fig. 3, these are the optimal

choices of m, which is confirmed by the circled values in Fig. D2(a) indicating a significantly higher correlation between MSC

and PMD channels compared to the results neighbouring to the left and right.

Furthermore, the matrix results in Figs. D1(b) and D2(a) can be used to compare the influence of spatial versus spectral

aliasing. Due to the different readout scheme (Fig. 3) both cannot be perfectly fulfilled simultaneously, either spectral or the10

spatial alignment between MSC and PMD can be achieved. In Fig. D1(b), the standard deviation of MSC measurements at

382 nm is slightly smaller (0.008) than for those at 424.5 nm (0.009). At 519 nm, however, the MSC values at 516.7 nm feature

a smaller standard deviation (0.008) compared to those at 521.8 nm (0.009). Hence, spectral alignment seems favourable for

PMD channel 1 at 382 nm whereas spatial alignment seems favourable for PMD channel 4 at 519 nm. The linear coefficients of

correlation in Fig. D2(a), however, indicate, that PMD channel 1 correlates slightly better to MSC channel 5 (0.998) compared15

to MSC channel 2 (0.997). Hence, spatial alignment is favourable if r2 should be optimal. For PMD channel 4, the deviation

of the respective r2 values is < 0.001 (both 0.998). It shall be noted here that Fig. D2(a) also illustrates the importance for the

correct choice of m. The correlation of PMD-PP at 519 nm with itself is significantly reduced from 1 to 0.994 if the value of

m deviates by ±1.

The coefficient of correlation between MSC channel 10 and PMD channel 4 (m= 1) of r2 = 0.998 is optimal allowing a20

direct comparison and the investigation of the accuracy of small cloud fractions in the MSC product assuming that zero CF
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Figure 14. Comparison between MICRU MSC and MICRU PMD cloud fractions for April 2010: (a) at 382 nm and (b) at 519 nm. The plots

correspond to the combinations indicated by circles in Fig. D2(a).
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Figure 15. Standard deviation (SD) of PMD cloud fractions within one collocated MSC Pixel recorded in April 2010. PMD cloud fractions

are obtained from PMD-PP channel 10 (m=1) with minimal spatial aliasing to MSC channel 10, which are both centred at 516.7 nm. (a)

Density of PMD standard deviation and MSC cloud fraction; (b) histogram of MSC cloud fraction for a standard deviation of the collocated

PMD measurements < 0.005, that is the lowermost row in (a); (c) relative frequency corresponding to (b). Note that the lower part of (b) is in

linear, the upper part in logarithmic scale.

is physically only possible if all including PMD CFs are also zero. Therefore, standard deviations of PMD CFs within each

MSC pixel are computed. Figure 15 shows the density of CF standard deviations versus MSC cloud fractions. The maximum

standard deviation is minimal for small and large CF and maximal for CF of approximately 0.5. The absolute and relative

distributions of MSC measurements corresponding to a standard deviation of PMD CF <0.005 are plotted in Figs. 15(b) and

(c), respectively. The width of the histogram bins is 0.02 CF. Figure 15(b) peaks at -0.01 CF and Fig. 15(c) at -0.03 CF, which5

can be interpreted as an estimate for the accuracy of small MICRU CF.
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Figure 16. Comparison between MICRU MSC at 440 nm and OCRA based on CF data from April 2010: measurements over (a) land and

(b) ocean. This comparison applies cropped data.

3.4 Comparison to other CF algorithms

3.4.1 MICRU vs. OCRA

Figures 11(s) and (t) in Sect. 3.2 suggest that OCRA measurements may be biased high in the western part of single cloud-

free swaths over land. This observation is now investigated further based on monthly statistics. Figures 16(a) and (b) compare

MICRU and OCRA measurements recorded over land and ocean, respectively. Most apparently, the slope of 1.35 indicates5

differently definitions of the upper threshold. Figure D2(c) consistently confirms that OCRA overestimates large CF compared

to FRESCO and MICRU CF. This is probably due to OCRA applying a scattering cloud model to define the upper threshold

whereas FRESCO and MICRU apply a reflecting cloud model. It needs to be noted that this comparison between OCRA and

MICRU applies cropped data as described in Sect. 2.6, which may furthermore affect the overall slope.

Secondly, it is focussed on the scatter of very small cloud fractions. Figure 16 clearly shows that OCRA CF for very small10

MICRU CF scatter more than MICRU CF for very small OCRA CF (cf. Fig. D1(b)). Figures 16(a) and (b) investigate this

feature depending on surface type land and ocean, respectively. Small OCRA CF over land scatter significantly more for small

MICRU CF when compared to measurements over ocean. This behaviour may again be explained by interferences from spatial

heterogeneities of the land surface reflectivity. OCRA also applies measurements in the red spectral range, and, hence, is

affected by these heterogeneities.15

Figure 17 shows a detailed comparison between OCRA and MICRU over land where the data is sorted according to the

viewing direction west, nadir, and east, respectively. Focussing again on small CF, a significant bias of 0.066 may be detected

when averaging over the 8 westernmost GOME-2 pixels of the swath (Fig. 17(a)), whereas the bias towards nadir and east is

negligible (0.02). Furthermore, the scatter of small OCRA CF is larger towards western compared to eastern viewing directions.
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Figure 17. Same data as Fig. 16(a) but for different viewing angles: (a) west, (b) nadir, and (c) east. This comparison applies cropped data.

3.4.2 MICRU vs. FRESCO

Figure 18 compiles the comparison between MICRU CF at 440 nm and three FRESCO versions depending on surface type land

or ocean, respectively. Overall, all FRESCO versions reveal a significantly higher scatter of small CF compared to MICRU,

which is similar to the comparison to OCRA. Furthermore, the scatter over land is consistently larger compared to over ocean

due to the increased albedo effect at 757 nm applied by FRESCO. The slope of the comparisons is close to unity due to a5

similar definition of the upper threshold. But there are specific differences between the FRESCO versions.

The comparisons to FRESCO L1b in Fig. 18(a) and (b) feature smaller biases for small CF than FRESCO v7 and v8, which is

in agreement with Fig. D1(b). The respective comparisons applying FRESCO v7 data in Fig. 18(c) and (d) reveal significantly

larger scatter over both land an ocean. The bias over land is larger than 0.08, which seems to be a specific feature for FRESCO

v7 as all other investigated products are less biased against each other (cf. Fig. D2(b)). The comparison over land in Fig. 18(c)10

includes FRESCO CF up to 0.5 for MICRU CF=0, which may be attributed to albedo effects along coasts as investigated

below (Fig. 20). Figure 18(d) than shows a small quantity of unrealistic CF smaller 0.2 over ocean for MICRU CF up to 0.8.

Next, the comparison between FRESCO v8 and MICRU features a bias smaller compared to v7 but still larger than L1b. The

scatter is significantly improved compared to v7, but the scatter of small FRESCO CF for small MICRU CF is still much larger

than vice-versa. In Fig. 18 may be furthermore observed that both FRESCO versions v7 and v8 feature CF <0. This is an15

improvement considering that physical measurements are affected by noise.

Similar to the comparison to OCRA, the comparisons between FRESCO and MICRU over land are now investigated de-

pending on viewing geometry. Figure 19 consistently demonstrates that the western part of the swath are biased due to BRDF

effects. Largest biases are observed towards east for FRESCO L1b and v7 (Figs. 19(d) and (g)), whereas the comparisons

between FRESCO v8 and MICRU are almost independent from the viewing direction (Figs. 19(g)-(i)). It is furthermore noted20

that the comparisons between MICRU and FRESCO L1b for nadir and eastern viewing geometries in Figs. 19(b) and (c) reveal

an almost identical scatter of small MICRU CF for small FRESCO CF and vice-versa. This feature, however, is not visible in
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Figure 18. Comparison between MICRU MSC at 440 nm and three different FRESCO versions based on CF data from April 2010: mea-

surements over land (left column) and ocean (right column); FRESCO L1b (top row), FRESCO v7 (middle row), and FRESCO v8 (bottom

row). The comparison to FRESCO L1b applies cropped data. The comparisions in (c)–(f) only exclude CF > 1.

the comparison with the two more recent FRESCO versions, for which a significant amount of small CF are systematically

biased (Figs. 19(e),(f), (h), and (i)).

A final comparison between MICRU and FRESCO focusses on spatial features in average CF maps. Figure 20 compares

average MICRU CF maps derived at 440 nm with three corresponding average maps from FRESCO data. The maps zoom on

Mexico and its Pacific coast where interferences due to the land-sea contrast can be expected. All maps are computed using the5

same selection of data: January, April, July, and October 2010. In order to reduce potential interferences from BRDF effects (cf.
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Figure 19. Viewing angle dependence of the comparison between MICRU at 440 nm and three different FRESCO versions over land. Same

data as Fig.18(a), (c), and (e), respectively.

Fig. 19), only the central third (nadir) of the swath is considered where |θ|< 23.5°. Significant differences between the 4 CF

products are visible in the mean CF maps in the left column of Fig. 20 even though major features are similar. The difference

plots in the right column quantify the differences. Comparing MICRU to FRESCO L1b in Fig. 20(c) reveals relatively high

spatial gradients, especially at the coast of the peninsula. Furthermore, MICRU seems to be biased low in comparison to

FRESCO L1b over the Pacific and mainland Mexico, especially in the north-east of the zoom image. The comparison to5

FRESCO v7 in Fig. 20(e) differs significantly. Here, FRESCO v7 is biased high throughout the image. Furthermore, FRESCO

v7 CF are biased low by more than 15% along the coasts, which may be attributed to the low resolution sampling applied
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in the LER computation for this FRESCO version in combination with the larger albedo contrast between land and ocean

in the wavelength rage applied by FRESCO. For FRESCO v8 (Fig. 20(g)), this issue is partially reduced by applying LER

maps with an increased resolution along coasts. Another feature in the comparison to FRESCO v7 and v8 in Figs. 20(e) and

(g) is pointed out. Both average FRESCO data are biased high with respect to MICRU in central Mexico east of Torreón

Municipality, where the surface albedo is significantly higher compared to the surrounding. Hence, this feature may again be5

due to the comparatively low spatial sampling of the background LER maps and the red wavelength range, where the influence

of the albedo on CF is larger compared to shorter wavelengths. In contrary, this interference is not visible in Fig. 20(c) where

a MERIS background map sampled at higher spatial resolution is applied.

3.4.3 Temporal evolution and degradation

So far, the statistical evaluations are carried out on monthly data aggregates. Now, the temporal evolution of the different10

CF products is investigated with respect to small CF. Here, the temporal evolution is studied based on the 15th percentile of

monthly CF measurements framed by the 55° parallels. Preceding test showed that 10 to 15% of GOME-2 MSC measurements

are effectively cloud-free. The selection of the 15th percentile showed optimal contrast for this study and avoids saturation or

normalisation effects. Figure 21 compiles the temporal evolution of selected CF products and groups them in order to highlight

different comparative aspects.15

There are, however, no significant trends visible in the investigated time period.

Figure 21(a) compares the time series of different cloud products: MICRU MSC channel 8, the same MSC channel but

applying only one year of data (dashed blue), the two MICRU PMD channels at a similar wavelength of 460, nm (cf. Table 2),

OCRA, and the three FRESCO versions. First off, the two MICRU MSC versions align almost perfectly. Apparently, reducing

the time interval used to derive the LT parametrisation has an almost negligible effect in this comparison. Furthermore, MICRU20

MSC and PMD data also align almost perfectly, with the PMD results being positively biased of ≈ 0.005. The amplitude of

bi-annual variations is of the same order. In contrary to the MICRU results, OCRA and FRESCO results feature a larger

amplitude of at least 0.01 and an increased annual instead of bi-annual oscillation. For all products, the overall trends are

negligible compared to the annual variations.

Figure 21(b) details the CF statistics depending on VZA over land (cf. Figs. 19 and 17). The plot confirms the aforementioned25

results: MICRU shows negligible VZA-dependence of the 15th percentile. For FRESCO v8, the 15th percentile of nadir

measurements (solid gray line) is approximately 0.01 smaller compared to measurements in the eastern and western third

of the swath. The VZA-dependence in the OCRA percentiles is significantly larger compared to MICRU and FRESCO. OCRA

data reveals a clear east to west trend, while FRESCO v8 features minimal CF values in the centre third of the swath. The CF

in the western third of the swath of OCRA (dotted orange line) average to 0.06 while the average is close to zero in the eastern30

third of the swath.
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Figure 20. Comparison between average cloud fractions from different algorithms: (a) MICRU PMD channel 8 at 440 nm; (b), (d), and (f)

FRESCO L1b, v7, and v8, respectively; (c), (e), and (g) respective differences between MICRU and FRESCO. Averages include all nadir

measurements (|θ|< 23.5°, same as in Figs. 19(b), (e), and (h), respectively) recorded in January, April, July and October 2010. The T in (e)

and (g) marks the location of Torreón Municipality in Comarca Lagunera, Mexico (see text).
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Figure 21. Temporal evolution of the 15th percentile of monthly cloud fraction distributions: (b) comparison between selected MICRU

channels, OCRA, and 3 FRESCO versions and (b) viewing angle dependency of MICRU, OCRA and FRESCO v8. Note that the offset

between the blue line in (a) and the average of the blue lines in (b) is due to a different data subset, that is all vs. land only, respectively.
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4 Discussion

4.1 MICRU

Figures 8 and 9 illustrate the Tmin retrieval at two different sites and wavelengths. The residuals in both examples (Figs. 8(f)

and 9(f)) are on average significantly smaller than the targeted 0.04 CF accuracy. Systematic contributions from degradation,

seasonal variability, VZA-dependence, and sun glitter are small. This indicates that Eq. (4) is sufficient to parametrise Tmin for5

GOME-2A. Figures. 11 and 21(b) also support this conclusion.

Equation (4) models the residual VZA dependence. Figure 10 shows that the VZA dependence and its temporal dependence

vary between GOME-2 channels even though they are measuring in the same wavelength region. This indicates that the in-

strumental contribution to the residual VZA dependence is at least of the same order than possible inaccuracies of RT used to

invert the surface LER T . Hence, this issue can not be solved by a more accurate RT but needs to be corrected for empirically.10

Furthermore, degradation needs to be accounted for and it needs to be noted that the design of MICRU would allow degrada-

tion models different to Eqs. (4) and (10). For example, discrete functions and prescribed degradation are both possible to be

included.

Considering the influence of surface BRDF effects on MICRU CF, our results support the discussion by Lorente et al. (2018)

that the LER model systematically underestimates the surface reflectance in forward direction corresponding to the eastern part15

of the GOME-2 swath. Figures B1(f) and C1(c) show that the average apex offset is biased high. The minimum gradient of the

polynomial is more frequently in the eastern part of the swath. This suggests stronger contributions from the surface BRDF

in the western part of the swath in accordance with Lorente et al. (2018). Therefore, MICRU CF in Figs. 11, 17, and 19 are

consistently smaller in the western part of the swath when compared to OCRA and the three FRESCO versions because OCRA

and FRESCO both apply a constant surface reflectance model whereas MICRU applies an empiric VZA dependence model.20

Lorente et al. (2018) furthermore claim that surface effects are stronger for longer wavelengths where atmospheric scattering

is weaker. Figure C1(b) may support this claim: the average curvature of the residual VZA dependency decreases with wave-

length but its variance increases. This observation is consistent for all three channels and suggests that, at shorter wavelengths,

the residual VZA dependency is due to a combination of instrumental and RT effects, which are similar for the ensemble of

measurements. At larger wavelengths, however, the surface introduces a larger variance due to stronger spatial and season25

heterogeneities. However, the wavelength dependency of the apex offset in Fig. C1(c) is ambiguous. The average apex offset

peaks between 450 and 700 nm for two out of three GOME-2 channels. The variance, on the other hand, is minimal for shorter

wavelengths. Therefore, retrieving CF in the UV/blue spectral range is in any case beneficial in order to reduce interferences

with surface albedo and type.

In addition to interferences with BRDF effects, there is another drawback of retrieving CF at larger wavelengths (cf.30

Sect.3.3.2), which is caused by the spectral surface albedo and its heterogeneity increasing with wavelength. CF retrieved

at 382 and 440 nm correlate better compared to those retried at the O2-B and O2-A band at 670 and 757.5 nm, respectively.

This effect is studied more systematically in Fig. D1(b) revealing a significant increase of the standard deviation of small CF

between 521.8 and 670 nm.
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Another aspect of the MICRU MSC channel intercomparison is a slope deviating from unity as, for example, shown in

Fig. 13(a). CF at 382 nm are biased high with respect to those retrieved at 440 nm while the intercept at zero CF is negligible.

Hence, the definition of Tmax apparently deviates between MICRU channels. Figure D2(c) compares the slopes of all MICRU

channels. There is a significantly biased slope for MSC channels 1–4 retrieved at 389.7 and below. This step between MSC

channels 4 and 5 may be attributed to the application of different GOME-2 bands, specifically bands 2B and 3, from which5

the MICRU channels are extracted (cf. Table 1). We would like to note that we observed also the CF accuracy degrading

near GOME-2 band edges when fine-tuning the MSC channel definitions (Table 1). The degradation depends only weakly on

kernel width leading to the conclusion that this is a broadband effect, possibly caused by instrumental straylight. Furthermore,

interferences with molecular absorption and atmospheric scattering resulting in a wavelength dependent R may also cause a

systematic slope bias.10

From the systematic studies compiled in Figs. D1 and D2(c) we may conclude that MSC channels between 424.5 and

521.8 nm are most consistent. The varying slope in Band 2B may be influenced by instrumental effects. For cloud height

retrievals using the O2-A band, MICRU channels 4 and 7 centred at 389.68 ad 433.4 nm, respectively, may be a good option

for GOME-2 as they offer reasonable spatial aliasing (Fig. 3). There is a slight priority for channel 7 when considering the

mean and standard deviation of small CF in Figs. D1(a) and (b).15

The comparison between MSC and PMD channel results with minimal spatial alignment in Fig. 14 shows an almost perfect

correlation and biases ≤ 0.4. The correlation in the UV is slightly lower compared to the visible, which may be caused by the

inferior spatial aliasing in the UV. The comparisons between MSC and PMD furthermore reveal a slope significantly smaller

than 1. Figure D2(b) reveals that this is a minor feature and may be explained by calibration differences between the different

GOME-2 channels. However, the slope is dominated by differences of the definition of the UT, which are not accounted for by20

MICRU. This behaviour has a minor effect on the accuracy of the LT.

The comparison between MSC and PMD measurements allows to estimate the influence of spatial (i. e. temporal) and the

spectral alignment. Figure D2(a) confirms a maximum correlation for optimal m as expected. The influence of the spatial

alignment parameter m is found significant and deviations by ±1 degrade the correlation from 0.998 to 0.992 for MSC at

516.7 nm. Results comparing spatial versus spectral alignment are not very clear. At least for PMD channel 4 (PMD-PP centred25

at 519 nm) spatial alignment seems slightly favourable over spectral alignment, which would be perfect for MSC channel 11

(Fig. D1(b)).

Hence, MSC channel 10 is selected over channel 11 to be compared to PMD-PP channel 4 withm= 1 in order to investigate

the absolute accuracy of small CF. The comparison between the standard deviation of PMD CF within one MSC pixel in Fig. 15

indicates that the systematic bias of MICRU CF is of the order of -0.03.30

Figure 21 finally shows that small MICRU CF have negligible trend over the investigated period of more than 6 years.

The variations of the 15th percentile are smaller than 0.01. Clearly, CF at different viewing directions are significantly more

consistent for MICRU compared to OCRA and FRESCO.
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4.2 OCRA

OCRA CF are compared to MICRU PMD results based on singular orbits and exemplary monthly statistics. Both approaches

consistently reveal that OCRA CF are biased high for observations towards west (Figs. 11(s), 11(t), and 17(a)). This indicates

that BRDF effects have a stronger influence on OCRA results for observation geometries opposing the sun. OCRA CF values

in the eastern third of the GOME-2 swath have similar statistics like MICRU (Fig. 21(c)).5

Considering the bias of small MICRU CF of -0.03, the bias of OCRA measurement in the western third of the swath can be

estimated to 0.095 on average over land. These biases may be even larger depending on observation geometry and surface type

(Fig. 11(t)).

The overall statistics in Fig. 16 indicate that small OCRA CF are on average less biased when taking into account the

negative systematic bias of MICRU (Sect. 3.3.3). The accuracy of singular OCRA measurements, however, is significantly and10

consistently lower compared to MICRU as revealed by the larger scatter of OCRA CF for very small MICRU CF than vice

versa (Figs. 16, 17, and D1(b)).

From the investigation of OCRA CF over ocean in Fig. 11(u) it can be concluded that OCRA’s empirical correction algorithm

a bit too optimistic. While large contributions by sun glitter seem to be removed, the area at larger θr are still positively biased.

It is noted that the conservative MICRU sunglint warning flag contains the affected regions.15

4.3 FRESCO

Three different versions of FRESCO CF are compared to MICRU MSC results based on singular orbits, exemplary monthly

statistics, and average nadir maps. The different approaches for the background maps of the FRESCO versions are clearly

visible in Figs. 19 and 20. Small FRESCO CF over land are significantly biased high for western observation geometries by

0.17 and 0.21 on average for FRESCO L1b and v7, respectively. In contrary, the comparison between FRESCO v8 and MICRU20

is almost independent of the VZA. Therefore, we conclude that the consideration of BRDF effects in FRESCO v8 displays a

significant improvement compared to preceding versions of the product.

On the other hand, however, Fig. 20 shows that interferences with the coast are minimal for FRESCO L1b whereas both

newer FRESCO versions are significantly biased high at coasts an inland. This issue is slightly improved in FRESCO v8, where

GOME-2 background LER data is sampled at a four times higher resolution at coasts. This specific positive bias along coasts25

may interfere with the processing and evaluation of tropospheric trace gas products from GOME-2 applying FRESCO because

it leads to filtering a significant amount of measurements there when a CF-threshold filter is applied. Assuming a significant

fraction of the worlds population resides along coasts this interference is considered significant. Less coastal measurements

would be applied using FRESCO L1b, but this would come with the cost of filtering many measurements in the western part

of the swath as investigated by Fig. 19).30

Compared to MICRU, FRESCO results are biased high as indicated in the top right section of Fig. D1(a). The mean biases

of FRESCO v7 and v8 are between 0.05 and 0.07, which is unrealistic even when considering the systematic bias of MICRU

CF. In this light, FRESCO L1b CF, however, are probably less biased on average compared to MICRU.
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The scatter of FRESCO CF for very small MICRU CF, however, is consistently larger for all FRESCO versions than vice

versa. This may be attributed to the application of radiances close to the O2-A band as discussed above. From the comparison

of MICRU CF at different wavelengths we may furthermore conclude that the attempt by Desmons et al. (2019) to apply

FRESCO at the O2-B band may not fully mitigate significant interferences with heterogeneities of the absolute surface albedo.

In general, it appears that features in the comparison between one FRESCO version and MICRU do not appear in the5

comparison with the other FRESCO versions. We therefore conclude, that MICRU reveals actually less systematic features

than all three considered FRESCO versions.
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5 Conclusions

MICRU is a cloud fraction retrieval algorithm based on satellite radiance measurements of backscattered solar radiation. The

MICRU algorithm achieves an accuracy of 0.04 in calculating small effective cloud fractions (CF) from spectroscopic satellite

measurements. This is a prerequisite for accurate trace gas retrievals because clouds in most cases determine the radiative

transport within each satellite measurement. The unique feature of MICRU is the application of an empirical BRDF surface5

model accounting for viewing angle dependencies in the cloud retrieval.

As a proof-of-concept, we applied MICRU to GOME-2A data, but the algorithm is also applicable to similar spectroscopic

satellite missions like SCIAMACHY, OMI, TROPOMI/S-5P, and Sentinel-5. Furthermore, MICRU can also process UV/vis

imager data like AVHRR, MERIS, MODIS, or Sentinel-2 due to its scalable design.

Our results confirm that MICRU is capable to accurately retrieve small CF over a wide spectral range, which renders it10

an optimal choice for tropospheric trace gas retrievals. These should use a cloud product based on radiance measurements

of similar wavelength and spatial sampling so that the correlation between cloud and trace gas retrievals are optimised. For

example, satellite instruments like Sentinel-5 have an inter-band offset of up to 30%, which deteriorates the applicability of

particularly small cloud fractions retrieved in the red spectra range (e.g. FRESCO) to DOAS products like NO2 and HCHO

retrieved in the UV/blue spectral region.15

In conclusion, applying radiances recorded in the UV/blue spectral range is advantageous over the red spectral range in

order to reduce surface effects. Furthermore, spatial alignment effects between MSC and PMD channels may be minimised

by choosing appropriate spectral convolution kernels. In order to test the applicability of MICRU to data from recent satellite

missions spanning less than 6 years, it was applied on a data set reduced to one year. Results of this alternative retrieval are

found to provide sufficient accuracy. Hence, MICRU may be applied on satellite missions offering less data than the GOME-2A20

mission with confidence.

Data availability. All spectral data is contained in the level 1b (L1b) data provided by EUMETSAT. GOME-2 data is available at EO Portal at

eumetsat.int. MODIS snow data has been provided by Hall and Riggs (2016) Sea Ice data has been provided by Cavalieri et al. (1996) Global

30 Arc-Second Elevation (GTOPO30) Digital Object Identifier (DOI) number: /10.5066/F7DF6PQS Global Self-consistent, Hierarchical,

High-resolution Geography Database (GSHHG) can be downloaded from NOAA NCEI (NOAA, 2018). ERA Interim data used in this study25

were provided by the European Centre for Medium Range Weather Forecasts (ECMWF).
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Appendix A: Tmin merging steps

The merging process consists of the following steps:

– Extrapolate all results to highest resolution.

– Discard result bins fulfilling

– i< 4, or5

– a0≤ -0.5 for ϕ> 80°S.

– Additionally, filter oceans bins where

– N∗ ≤120, or

– N∗ ≤1000 for N∗

N < 0.02 and |ϕ| ≤65°

is fulfilled, except in the coarsest resolution realised in binning 7.10

– Additionally, filter bins over land with N∗ ≤ 80.

– Filtered maps are merged from coarse to fine resolution in order to maintain the highest resolution possible.

– Empty bins – or gaps – are extrapolated as follows:

– For ϕ≤80°S, zonal means are copied into the gaps, if there are no data at the same latitude at all, β from one row

towards North are applied15

– Remote gaps, like islands or lakes, which are more than 6° longitude and 3° latitude away from a valid bin, are

filled with zonal mean values

– Remaining gaps, e. g. at coasts, are filled by successive applying a Gaussian convolution kernel with a 1σ diameter

of 3° longitude and 1° latitude.

– Set ag = 0 for |ϕ|>65°20

Appendix B: Tmin parameter map

Figure B1 shows an exemplary stitching result for MSC channel 2. The spatial origin of the finally applied fit results is compiled

in Fig. B1(a): Fit results from the highest resolution - binning 1 over land and binning 4 over ocean – are in dark blue colour.

Extrapolated bins are in coloured yellow. Coastlines typically apply coarser resolutions because of the poorer statistics and the

90% cut-off criterion for the respective surface types. Polar oceans appear in light blue or orange colours because frequent25

clouds and bright sea ice significantly reduce N∗.
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Figure B1. Parametrisation of the lower threshold (LT) for MSC channel 02 after post-processing: (a) binning over land and ocean, (b) final

threshold T , (c) offset, (d) offset degradation, (e) curvature, (f) apex angle, (g) apex degradation, (h) scattering angle, (i) sun glitter. In (a),

colors other than dark blue indicate regions, where the resolution is reduced or extrapolation (ex) is applied. Coast containing pixels display

land results.

Figure B1 is a merged Tmin map of all binned Tmin-results for MSC channel 2. It is the base LUT for calculating Rmin

globally. Figure B1(b) indicates, that τ increases over water and desert regions with larger LER. Figures B1(c) through (i)

illustrate the geographical dependence of the fitted surface parameters. A significant latitudinal dependence and interferences

with the increased cloud probability at the ITCZ can be observed for all parameters. A significant land-sea contrast is visible for

the apex degradation in Fig. B1(g): the apex seems to shift systematically less over land. Furthermore, there is a significantly5

different behaviour of the apex angle and scattering angle dependence over the rain-forest regions between South America

and Africa in Figs. B1(f) and (h), respectively. Both regions feature a comparatively large cloud probability, and, hence, less

statistics available for the Tmin retrieval.
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It is noted that Figs. B1(d) and (g) reveal that both trend terms are latitudinally correlated with opposite sign. A discussion

of independent terms is therefore difficult. This observation, however, confirms an overall degradation of the VZA dependence

as shown in Fig. 7.

Sunglint is not constant throughout Fig (i) and, therefore, cannot be corrected for a-priori. Specifically, (i) indicates lower

values in the ocean west of equatorial Africa and India. Towards the poles scatter increases as sunglint contribution diminishes.5

Over the amazon, interestingly, there is a clear signal from sun glitter, which was not expected a-prior, illustrating the gain by

fitting this parameter also over land.

Appendix C: Wavelength dependency of MICRU results

Figure C1 compiles the average wavelength dependency of the Tmin parameters for MSC and PMD MICRU channels. Appar-

ently, offset degradation is much more an issue for MSC and PMD-PP when compared to PMD-SP (Fig. C1(a)), which is in10

accordance to the findings from Fig. 10. The VZA-dependence is consistently stronger in the UV compared to MICRU channels

at longer wavelengths (Fig. C1(b)) but relatively smaller for PMD-PP as already discussed above. The wavelength dependence

of the apex degradation in Fig. C1(d) seems to be much more complex, changing signs below 500 nm. The wavelength de-

pendence of as is small compared to the overall variability in Fig. C1(e). ag in Fig. C1(f) are increasing with wavelength

suggesting Rayleigh scattering is damping the contribution from sun glitter in the UV.15

Appendix D: Matrix comparison between MICRU, FRESCO, and OCRA

Figures D1 and D2 show a selection of comparisons between different MICRU MSC, MICRU PMD, FRESCO and OCRA

cloud products for April 2010. Figures D1(a) and (b) show the mean CF and standard deviation of selected CF for the product in

x-direction. The selection includes only those measurements fulfilling |c|< 0.01 of the product in y-direction. As a reference,

results in Fig. 13, that are results where MICRU MSC channels 2, 12 and 14 are compared to MICRU MSC channel 8 evaluated20

at 440 nm, correspond to the results in the second row as indicated by circles in Fig. D1 (a).

Focussing on the inter-MSC comparison, the upper left block in Figs. D1 and D2, one observes that the MICRU results are

relatively consistent for all MICRU channels. The standard deviation in Fig. D1(b) reveals a significant jump between 521.8

and 670 nm, which was already observed in Fig. 13. Figures D2(a) and (b) show that the correlation degrades and the deviation

of small CF increases with increasing spectral distance. The slope, which is dominated by Rmax, reveals a significant jump25

between 389.7 and 425.5 nm in Fig. D2(c) coinciding with a step from MSC band 2B to band 3 (cf. Table 1).

MSC applying less data

In addition to the standard MSC evaluation integrating 6 years of measurements (Sect. 2.1.1), an evaluation using only one year

of data is performed in order to simulate the performance of MICRU if applied to shorter data sets. We chose the year 2010

because it ranges approximately in the centre of the standard evaluation period where CF accuracy may be assumed optimal30
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Figure C1. Wavelength dependency of Tmin parameters: (a) offset degradation, (b) curvature, (c) apex offset, (d) apex degradation, (e)

scattering angle, and (f) sun glitter. MSC channels in red, PMD channels 1–8 in blue and PMD channels 9–16 in green. Interconnected data

points are median fit parameters. Transparent areas include 50% of all results with boundaries at the 25th and 75th percentiles.

(cf. Sect. 3.4.3). For this special evaluation, the parameters accounting for degradation (at and aa1 in Table 5) are constrained

to 0 for all MSC channels. The results of this simulation are included in the result matrices in Figs. D1 and D2 and denoted by

1 year.

The circles in Fig. D1(b) indicate the entries, where the new results are compared to the standard results, which are located

one column to the left. All circled values are larger compared to the standard evaluation. This indicates that small cloud5

fractions are less accurate if a shorter evaluation period is chosen. The corresponding matrix entries in Fig. D1(a) indicate that

small cloud fractions retrieved at 382 nm are more deviated compared to the standard evaluation (-0.3) compared to those at

longer wavelengths, where corresponding entries are negligible (denoted by ·).

46

https://doi.org/10.5194/amt-2020-182
Preprint. Discussion started: 18 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Mean CFx(|CFy|<0.01)

0.2

0.2

0.2

0.3

-0.6

-0.4

0.2

0.2

0.3

-0.7

-0.4

-0.3

-0.4

-0.3

-0.2

-0.9

-0.6

-0.3

0.2

0.3

-0.7

-0.4

0.2

0.2

0.2

0.3

-0.7

-0.4

-0.3

-0.2

-0.2

-0.2

-0.4

-0.4

-0.3

-1.0

-0.7

-0.5

0.2

-0.2

-0.3

-0.2

-0.8

-0.5

-0.3

-0.2

-0.3

-0.2

-0.9

-0.5

-0.3

-0.2

-0.3

-0.2

-0.9

-0.5

-0.3

0.2

-0.2

-0.3

-0.2

-0.8

-0.5

-0.3

-0.2

-0.3

-0.2

-0.9

-0.6

-0.4

0.3

-0.3

-0.2

-0.9

-0.6

-0.3

0.3

-0.2

-0.8

-0.6

-0.2

0.3

-0.2

-0.9

-0.6

-0.2

0.8

0.7

0.4

0.6

0.7

0.2

0.3

-0.5

0.2

0.7

0.6

0.3

0.6

0.6

0.3

-0.5

0.8

0.7

0.4

0.6

0.7

0.2

0.4

-0.5

0.2

0.7

0.7

0.5

0.4

0.6

0.3

-1.6

-1.5

-0.3

0.6

0.6

0.5

0.4

0.6

0.3

-1.5

-1.4

-0.3

0.3

0.3

0.3

0.5

0.2

-0.5

-0.2

0.2

0.3

0.3

0.3

0.5

0.2

-0.5

-0.2

0.2

0.3

0.5

0.3

0.3

0.7

0.4

-0.4

0.3

0.3

0.3

0.3

0.3

0.5

0.2

-0.7

-0.4

0.3

0.4

0.3

0.2

0.5

0.2

-0.6

-0.4

0.4

0.5

0.3

0.3

0.7

0.3

0.2

-0.6

-0.3

0.2

3.2

3.2

3.2

3.0

3.1

3.1

2.8

0.3

1.4

1.7

7.1

6.8

6.5

5.8

5.6

7.0

6.2

3.5

0.5

2.8

3.7

5.3

5.3

5.2

4.8

4.8

5.2

4.9

3.0

0.9

0.4

3.6

2.8

2.7

2.6

2.3

2.4

2.7

2.4

1.5

0.9

1.8

0.2

M
SC 3

75

M
SC 3

82

M
SC 3

82 (1
ye

ar)

M
SC 3

88

M
SC 3

89.7

M
SC 4

24.5

M
SC 4

25

M
SC 4

33.4

M
SC 4

40

M
SC 4

40 (1
ye

ar)

M
SC 4

60

M
SC 5

16.7

M
SC 5

16.7
 (1

ye
ar)

M
SC 5

21.8

M
SC 6

70

M
SC 6

70 (1
ye

ar)

M
SC 6

80

M
SC 7

57.5

M
SC 7

57.5
 (1

ye
ar)

PM
D-P

P 3
82 (m

=0)

PM
D-P

P 3
82 (m

=1)

PM
D-P

P 3
82 (m

=2)

PM
D-P

P 5
19 (m

=0)

PM
D-P

P 5
19 (m

=1)

PM
D-P

P 5
19 (m

=2)

FRESCO
 L

1b

FRESCO
 v

7

FRESCO
 v

8

O
CRA P

M
D

MSC 382

MSC 440

MSC 516.7

MSC 670

MSC 757.5

PMD-PP 382 (m=0)

PMD-PP 519 (m=1)

FRESCO L1b

FRESCO v7

FRESCO v8

OCRA PMD

CFx (data)

C
F

y
 (

s
e

le
c
to

r)

0

1

2

3

4

5

6

M
e

a
n

 c
lo

u
d

 f
ra

c
ti
o

n
 [

1
0

^-
2

]

(a)

Standard deviation of CFx(|CFy|<0.01)

0.6

0.9

1.2

1.5

1.9

0.9

1.2

2.2

2.5

2.3

2.3

0.6

0.9

1.2

1.4

1.9

0.8

1.2

2.2

2.5

2.3

2.3

0.8

1.0

1.2

1.5

1.9

1.0

1.3

2.2

2.6

2.3

2.3

0.6

0.8

1.2

1.5

1.9

0.8

1.2

2.2

2.5

2.3

2.3

0.6

0.8

1.2

1.4

1.9

0.8

1.2

2.2

2.5

2.3

2.3

0.8

0.6

1.0

1.3

1.8

0.9

1.0

2.1

2.4

2.3

2.1

0.8

0.6

1.0

1.3

1.8

0.9

1.0

2.1

2.4

2.3

2.1

0.9

0.6

0.9

1.2

1.8

1.0

1.0

2.1

2.4

2.3

2.1

1.0

0.6

0.9

1.2

1.8

1.0

1.0

2.1

2.4

2.3

2.1

1.0

0.8

1.0

1.3

1.8

1.1

1.0

2.1

2.4

2.2

2.1

1.1

0.6

0.8

1.1

1.8

1.2

0.9

2.1

2.4

2.3

2.1

1.4

0.9

0.6

0.9

1.7

1.5

0.8

2.2

2.4

2.3

2.2

1.5

1.0

0.8

1.0

1.8

1.5

1.0

2.2

2.4

2.2

2.2

1.4

0.9

0.6

0.9

1.7

1.5

0.9

2.2

2.4

2.2

2.2

3.4

2.6

1.9

0.6

2.6

3.5

2.2

3.4

3.1

3.8

3.0

3.5

2.7

2.0

0.9

2.7

3.6

2.3

3.4

3.0

3.7

3.0

3.5

2.7

2.0

0.6

2.7

3.6

2.3

3.5

3.1

3.9

3.0

3.9

3.5

3.3

2.8

0.6

4.1

3.5

3.8

2.7

2.9

3.2

3.9

3.5

3.3

2.9

1.1

4.1

3.5

3.8

2.7

3.0

3.2

0.7

0.9

1.1

1.4

1.8

0.6

1.1

2.0

1.8

2.0

2.1

0.8

0.9

1.0

1.3

1.8

0.7

1.0

2.1

1.8

2.0

2.2

1.1

1.3

1.2

1.4

2.0

1.0

1.1

2.3

1.9

2.1

2.3

1.4

0.9

0.9

1.1

1.5

1.3

0.7

1.9

1.6

2.0

1.9

1.4

1.0

0.7

0.9

1.6

1.3

0.6

1.9

1.6

2.0

2.0

1.5

1.2

0.9

1.0

1.8

1.5

0.7

2.1

1.7

2.1

2.1

5.4

5.3

5.1

4.8

4.7

5.5

4.8

0.2

1.6

4.2

4.5

7.5

7.2

6.9

6.2

5.8

7.6

6.7

4.5

0.4

4.8

5.3

5.1

5.0

4.8

4.5

4.5

5.2

4.9

3.6

2.0

0.4

5.2

3.3

3.1

3.1

2.9

3.1

3.3

3.1

2.5

2.6

3.3

0.3

M
SC 3

75

M
SC 3

82

M
SC 3

82 (1
ye

ar)

M
SC 3

88

M
SC 3

89.7

M
SC 4

24.5

M
SC 4

25

M
SC 4

33.4

M
SC 4

40

M
SC 4

40 (1
ye

ar)

M
SC 4

60

M
SC 5

16.7

M
SC 5

16.7
 (1

ye
ar)

M
SC 5

21.8

M
SC 6

70

M
SC 6

70 (1
ye

ar)

M
SC 6

80

M
SC 7

57.5

M
SC 7

57.5
 (1

ye
ar)

PM
D-P

P 3
82 (m

=0)

PM
D-P

P 3
82 (m

=1)

PM
D-P

P 3
82 (m

=2)

PM
D-P

P 5
19 (m

=0)

PM
D-P

P 5
19 (m

=1)

PM
D-P

P 5
19 (m

=2)

FRESCO
 L

1b

FRESCO
 v

7

FRESCO
 v

8

O
CRA P

M
D

MSC 382

MSC 440

MSC 516.7

MSC 670

MSC 757.5

PMD-PP 382 (m=0)

PMD-PP 519 (m=1)

FRESCO L1b

FRESCO v7

FRESCO v8

OCRA PMD

CFx (data)

C
F

y
 (

s
e

le
c
to

r)

0

1

2

3

4

5

6

7

C
lo

u
d

 f
ra

c
ti
o

n
 s

td
. 

d
e

v
. 

[1
0

^-
2

]

(b)

1
Figure D1. Tabular inter-comparison of MICRU and external cloud fraction results for April 2010: (a) Mean CF of product listed in x

direction selected by corresponding product in y direction with an absolute CF<1%, (b) same as (a) but listing the standard deviation. The

circled values in (a) correspond to Fig. 13. The circled values in (b) indicate values comparing data of the same MICRU channel but different

evaluations periods: one year versus the standard data set applying 7+ years.
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Linear correlation CFx vs. CFy
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Figure D2. Continuation of Fig. D1: (a) linear coefficient of correlation r2, (b) and (c) intercept and slope of bi-variate linear fit, respectively.

Numbers of small deviations from 0 and 1, respectively, are omitted for the sake of clarity. The circled values in (c) correspond to Fig. 14.
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FRESCO L1b mean CF 07/2007-06/2013
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Figure E1. Same as Fig. 12 but six year average of FRESCO L1b cloud fraction measurements recorded between 1 July 2007 and 30 June

2013. Areas without data are plotted in gray.

Appendix E: Global average cloud fractions

This section compiles global average cloud fraction maps of FRESCO L1b (Fig. E1), FRESCO v7 (Fig. E2), FRESCO v8

(Fig. E3), MICRU PMD channel 4 (Fig. E4), and OCRA (Fig. E5) similar to Fig. 12 in Sect. 3.3.1 applying MICRU MSC

channel 8 in the main body of the paper. All maps are compiled from 6 years of data collected between July 2007 and June

2013, except for Figs. E2 and E3. Figure E2 comprises 4 months, Fig. E3 comprises year 2010, onky.5
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FRESCO v7 mean CF 01+04+07+10/2010
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Figure E2. Same as Fig. 12 but four month average of FRESCO v7 cloud fraction measurements recorded in January, April, July, and

October 2010. Areas without data are plotted in gray.

FRESCO v8 mean CF 2010
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Figure E3. Same as Fig. 12 but one year average of FRESCO v8 cloud fraction measurements recorded in 2010. Areas without data are

plotted in gray.
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 MICRU PMD channel 04 (519.0nm): mean CF 07/2008-06/2013
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Figure E4. Same as Fig. 12 but five year average of MICRU PMD channel 04 cloud fraction measurements recorded between 1 July 2008

and 30 June 2013. Areas without data are plotted in gray.

OCRA mean CF 07/2008-06/2013
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Figure E5. Same as Fig. 12 but five year average of OCRA cloud fraction measurements recorded between 1 July 2008 and 30 June 2013.

Areas without data are plotted in gray.
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